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UEM
jcofaria@uem.br
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Resumo
Neste artigo, descreveremos matematicamente algumas pro-
priedades do reator de fusão nuclear denominado Tokamak, a
fim de deduzirmos a equação de Grad-Shafranov que modela
o equilı́brio do plasma no interior do reator. Para tal, apre-
sentamos aspectos básicos da fusão nuclear, das equações de
Maxwell e da magnetohidrodinâmica.
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Abstract
In this paper, we gave a mathematical description of some
properties of the nuclear fusion reactor called Tokamak, in
order to derive the Grad-Shafranov equation which models the
plasma equilibrium inside the reactor. For that, we presented
some basic aspects of nuclear fusion, Maxwell’s equations and
magnetohydrodynamics.
Keywords: Tokamak. Maxwell’s equations. Magnetohy-
drodynamics. Differential equations.
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1 Introduction
The Tokamak is a fusion reactor considered one of the most promising clean energy sources, still

in the research and experimentation phase. The word Tokamak originates from an acronym of the
russian expressions ”torodalnaya kamera”and ”magnitnaya katushka”, which translates to ”toroidal
chamber and magnetic coils”[1], and denominates an experimental nuclear fusion reactor created in
the early 1950s by the soviet physicists Igor Tamm and Andrei Sakharov, from Oleg Lavrentyev’s
original idea. The main goal of the Tokamak research and experiments is to build a trustworthy and
self sustainable clean energy source, so necessary in these times of energy crisis.

This reactor is basically formed by an immense electromagnet that contains a vacuum chamber
in its interior, in which a plasma ring is confined by an intense magnetic field. The electrical current
inside the Tokamak is generated by an inductive effect: the plasma is the secondary winding of
a transformer. A current pulse is applied in the primary, and the toroidal current is created by
electromagnetic induction (Figure 1).

Figura 1: The electrical current flowing in the coils induces a poloidal magnetic field (1) and a
toroidal magnetic field (2).

Figura 2: The Tokamak is basically composed of a primary coil (1); position control coils (2);
toroidal field coils (3) and the plasma circulating in its interior (4).

The toroidal field coils generate a toroidal magnetic field, and the combination of both of these
fields provides the optimal equilibrium of the plasma ring and controls its position inside the vacuum
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chamber, producing an adequate plasma confinement. The charged plasma particles tend to move
along the magnetic field lines and, in the Tokamak, these field lines are helical. Therefore, the
particles will remain confined but large scale drifts can arise, for example, in the presence of an
electric field perpendicular to the magnetic field. In this case, the particle orbits undergo a drift
perpendicular to both fields, which is called 𝑬 × 𝑩 drift (Figure 3).

Figura 3: 𝑬 × 𝑩 drift of an ion and an electron.

Another type of drift occurs when a particle is in the presence of a magnetic field with a transverse
gradient. The particle orbit has a smaller radius of curvature on the part of its orbit in the stronger
magnetic field, and this generates a drift perpendicular to both the magnetic field and its gradient
(Figure 4).

Figura 4: The ∇𝑩 drift: the gradient of 𝑩 perpendicular to 𝑩 gives ion and electron drifts in opposite
directions.

This system can become incredibly complex of being physically controlled, and the great number
of macroscopic and microscopic instabilities causes the mathematical modelling of the plasma
equilibrium to be extremely challenging. Since this is a system that involves magnetic fields
and electricity, it makes sense to talk about Maxwell’s equations. Furthermore, as the plasma
behaves like an electrical current conducting fluid in certain situations, it can be described by the
magnetohydrodynamics equations. This will lead to the main goal of this paper: to use rigorous
mathematical tools to model the ideal equilibrium situation for the plasma inside the Tokamak by
using differential equations. As a byproduct, we deduce the Grad-Shafranov equation.
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2 The equations of electromagnetism and magnetohydrodyna-
mics

Fundamental in the derivation of the Grad-Shafranov equation, the Maxwell equations are the
ones that describe the behaviour and the interaction of the electric and magnetic fields, these being
characterized by the system 

∇ × 𝑩 = 𝜇0𝑱 + 1
𝑐2

𝜕𝑬

𝜕𝑡
,

∇ × 𝑬 = −𝜕𝑩

𝜕𝑡
,

∇ · 𝑩 = 0,

∇ · 𝑬 =
𝜌𝑐

𝜀0
,

(1)

where 𝑩 is the magnetic field, 𝑬 is the electric field, 𝑱 is the electrical current density, 𝜇0 is the
magnetic permeability constant, 𝜌𝑐 is the electrical charge density, which can be considered zero due
to the quasi-neutrality of the plasma, and 𝑐 is the speed of light. Also, in this case the displacement
current

𝑱𝑑 = 𝜀0
𝜕𝑬

𝜕𝑡

is negligible in this context. A more detailed approach to the physical aspects inherent to these
equations can be found in [2]. In order to find the solutions to Maxwell’s equations, notice that from
the third equation of (1), we have that

∇ · 𝑩 = 0 ⇒ 𝑩 = ∇ × 𝑨, (2)

where 𝑨 is a vector potential. Substituting this expression of 𝑩 in the second equation of (1) yields

∇ × 𝑬 = − 𝜕

𝜕𝑡
[∇ × 𝑨],

from which we obtain
∇ ×

(
𝑬 + 𝜕𝑨

𝜕𝑡

)
= 0.

Therefore, the term in parenthesis can be expressed as the gradient of a scalar potential

𝑬 + 𝜕𝑨

𝜕𝑡
= −∇𝜙,

from which we get that

𝑬 = −𝜕𝑨

𝜕𝑡
− ∇𝜙. (3)

Thus, with the view to obtain the expressions of the electric and magnetic fields at (2) and (3),
we need to determine the relation between the potentials 𝑨, 𝜙 and the fonts 𝜌𝑐 and 𝑱. Indeed,
considering the fourth equation of (1) and equation (3), we have that

∇ ·
(
−𝜕𝑨

𝜕𝑡
− ∇𝜙

)
=

𝜌𝑐

𝜀0
,
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and so
𝜕

𝜕𝑡
[∇ · 𝑨] + Δ𝜙 = −𝜌𝑐

𝜀0
. (4)

Now, we can rewrite the first equation of (1) considering (2) and (3):

𝑐2 (∇ × (∇ × 𝑨)
)
− 𝜕

𝜕𝑡

[
−∇𝜙 − 𝜕𝑨

𝜕𝑡

]
=

𝑱

𝜀0
,

or
𝑐2 (∇(∇ · 𝑨) − Δ𝑨

)
+ 𝜕

𝜕𝑡
[∇𝜙] + 𝜕2𝑨

𝜕𝑡2
=

𝑱

𝜀0
, (5)

where 𝜀0 =
1

𝑐2𝜇0
. As we can always do the gauge transformations

𝑨′ = 𝑨 + ∇𝜓 , 𝜙′ = 𝜙 − 𝜕𝜓

𝜕𝑡
,

for a scalar function 𝜓 without altering the fields 𝑬 and 𝑩, then the potentials 𝑨 and 𝜙 are not
uniquely determined. However, when we take the divergence of 𝑨 to be the Lorenz gauge

∇ · 𝑨 = − 1
𝑐2

𝜕𝜙

𝜕𝑡
,

we can get a more simplified form of (5):

−𝑐2Δ𝑨 + 𝜕2𝑨

𝜕𝑡2
=

𝑱

𝜀0
,

that is,

Δ𝑨 − 1
𝑐2

𝜕2𝑨

𝜕𝑡2
= − 𝑱

𝑐2𝜀0
.

Moreover, equation (4) becomes

𝜕

𝜕𝑡

[
− 1
𝑐2

𝜕𝜙

𝜕𝑡

]
+ Δ𝜙 = −𝜌𝑐

𝜀0
,

i.e,

Δ𝜙 − 1
𝑐2

𝜕2𝜙

𝜕𝑡2
= −𝜌𝑐

𝜀0
.

Therefore, if we only know the divergence or the curl of the magnetic or electric field, respectively,
it is possible to obtain its expression in terms of a vector potential or a scalar potential. This fact
will be applied again later to derive the Grad-Shafranov equation.

Another essential ingredient in obtaining the Grad-Shafranov equation comes from magnetohy-
drodynamics (MHD), which is a theory used to study the movement of electricity conducting fluids.
The MHD equations consists of Maxwell’s equations together with the fluid mechanics equations,
in which we need to add the effects of the electromagnetic forces. In the present analysis, we will
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de Matemática, Bauru, v. 22, n. 3, p. 57–69, dez. 2022. Edição Iniciação Cientı́fica.
DOI: 10.21167/cqdv22n3ic2022057069 Disponı́vel em: www.fc.unesp.br/departamentos/matematica/revista-cqd

61



consider the macroscopic behaviour of the plasma, i.e., that it behaves like a single fluid, without
making a distinction amongst its particles. In this way, we have the following equations:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒗) = 0, (6)

𝜌
𝑑𝒗

𝑑𝑡
= 𝑱 × 𝑩 − ∇𝑝, (7)

𝑑

𝑑𝑡
[𝑝𝜌−𝛾] = 0, (8)

∇ × 𝑬 = −𝜕𝑩

𝜕𝑡
, (9)

∇ × 𝑩 = 𝜇0𝑱, (10)

∇ · 𝑩 = 0, (11)

𝑬 + 𝒗 × 𝑩 = 0, (12)

where 𝜌 is the mass density, 𝒗 is the velocity of the fluid and 𝑝 is the pressure. In addition, 𝛾 = 5/3
is the specific heat ratio and

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝒗 · ∇

is the material derivative. Equation (6) describes the behaviour of the mass of the system with respect
to time and we can see that the total number of particles of the plasma is conserved in the ideal
model. The plasma momentum is given by (7), in which we have the inertial force (fictitious), the
magnetic force and the pressure gradient interacting in the fluid. In this simplified non-dissipative
model, we will assume an adiabatic behaviour (without internal or external heat transfer), which is
characterized by equation (8). The equations (9)-(11) are Maxwell’s equations.

Finally, we know that the electrical field is equal to zero in a perfectly conducting material, but
this rule is not valid when the conductor is moving in a magnetic field. In this case, the resultant
force in the charges of the material must be zero, because otherwise we would have an infinite flux
of free charges. Thus, when we consider the plasma as being perfectly conductive in this ideal MHD
model, we conclude that

𝑭 = 𝑞 (𝑬 + 𝒗 × 𝑩)
and then

𝑬 + 𝒗 × 𝑩 = 0,

which is exactly the expression in (12).

3 Nuclear fusion and the plasma movement inside the Tokamak
In the sequel, to be able to model the plasma equilibrium inside the Tokamak we need to

understand some of the physical aspects of its functioning. In nuclear fusion reactions, there are two
atomic nuclei that combine (or merge) to form a single more massive nucleus. In the Tokamaks,
the reaction fuel consists of hydrogen isotopes: deuterium and tritium. When a deuterium nucleus
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merges with a tritium nucleus, an 𝛼-particle is produced and a neutron is released, which results in a
reduction of the system’s total mass and, consequently, in an energy release by the reaction products
according to the equation

𝐸 = Δ𝑚𝑐2,

where Δ𝑚 is the mass variation that occurs during the process. It is possible to have a positive
energy variation if the fuel particles react before losing energy. For this to happen, they must retain
energy and remain in the reaction region long enough. In temperatures on this scale, the plasma
confinement by material walls is impossible, arising the need to use another method. That’s where
the Tokamak comes in.

Since the deuterium and tritium nuclei inside the Tokamak are positively charged, there is a
repulsion between them and therefore the fusion is only achieved if we can manage to overcome this
mutual repulsion. For such, these nuclei must have very high speeds and the most promising method
to supply this energy is by heating the deuterium-tritium fuel to a sufficiently high temperature:
approximately 10 keV ≈ 100 million degrees Celsius, at which the fuel becomes completely ionized.
This type of fusion if called thermonuclear fusion and its result is a gas named plasma.

The plasma consists of a gas formed by positive ions and free electrons when completely ionized,
and it is also known as the fourth state of matter. However, there are two special properties that set it
apart from other gases: the fact that the electric charge density of the ions and electrons in a plasma
are almost equal and its intrinsic ability to conduct electrical current. Although the behaviour of the
plasma is determined by the motion of the individual particles of the local electromagnetic field, the
restrictions that the magnetic field imposes on this movement causes the plasma to have properties
of a fluid at certain scales, which we will describe next.

From Lorentz’s law and Newton’s second law, we have that the equation of motion of a particle
of mass 𝑚 and charge 𝑞 in a magnetic field is given by

𝑚
𝑑𝒗

𝑑𝑡
= 𝑞 (𝒗 × 𝑩), (13)

where 𝑣 is the velocity and 𝑩 is the magnetic field. For a uniform field 𝑩 in the 𝑧 direction, the
components of equation (13) are 

𝑑𝑣𝑥

𝑑𝑡
=
𝑞𝐵

𝑚
𝑣𝑦 = 𝜔𝑐𝑣𝑦,

𝑑𝑣𝑦

𝑑𝑡
= −𝑞𝐵

𝑚
𝑣𝑥 = −𝜔𝑐𝑣𝑥 ,

𝑑𝑣𝑧

𝑑𝑡
= 0,

(14)

where 𝜔𝑐 is a constant that depends on the plasma. From the third equation of (14), we can see that
the velocity 𝑣𝑧 of the particles along the magnetic field is constant. In addition, we have

𝑣𝑥 = − 1
𝜔𝑐

𝑑𝑣𝑦

𝑑𝑡
,

from which we obtain

𝑣𝑥 = − 1
𝜔𝑐

𝑑

𝑑𝑡

[
1
𝜔𝑐

𝑑𝑣𝑥

𝑑𝑡

]
= − 1

𝜔2
𝑐

𝑑2𝑣𝑥

𝑑𝑡2
,
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de Matemática, Bauru, v. 22, n. 3, p. 57–69, dez. 2022. Edição Iniciação Cientı́fica.
DOI: 10.21167/cqdv22n3ic2022057069 Disponı́vel em: www.fc.unesp.br/departamentos/matematica/revista-cqd

63



that is,
𝑑2𝑣𝑥

𝑑𝑡2
= −𝜔2

𝑐 𝑣𝑥 . (15)

In a similar way, we can obtain that

𝑑2𝑣𝑦

𝑑𝑡2
= −𝜔2

𝑐 𝑣𝑦 . (16)

Since (15) is a linear second order differential equation, by letting 𝑣𝑥 (𝑡) = 𝑒𝜆𝑡 and using this
caracteristic equation, we can find the solution to this equation, namely

𝑣𝑥 (𝑡) = 𝑐1𝑒
𝑖𝜔𝑡 + 𝑐2𝑒

−𝑖𝜔𝑡

= 𝑐1
(
cos(𝜔𝑐𝑡) + 𝑖sen(𝜔𝑐𝑡)

)
+ 𝑐2

(
cos(𝜔𝑐𝑡) − 𝑖sen(𝜔𝑐𝑡)

)
.

Thus,
𝑣𝑥 (𝑡) = 𝐴1 cos(𝜔𝑐𝑡) + 𝐴2 sen(𝜔𝑐𝑡),

in which 𝐴1 = 𝑐1 + 𝑐2 and 𝐴2 = 𝑖(𝑐1 − 𝑐2). By choosing 𝐴1 = 0 and 𝐴2 = 𝑣⊥ the perpendicular
velocity to the (constant) magnetic field, we conclude that

𝑣𝑥 = 𝑣⊥sen(𝜔𝑐𝑡). (17)

A similar procedure shows that, by setting 𝐴1 = 𝑣⊥ and 𝐴2 = 0, the solution of (16) is
𝑣𝑦 = 𝑣⊥cos(𝜔𝑐𝑡). (18)

Therefore, since 𝑣𝑥 = 𝑑𝑥/𝑑𝑡 and 𝑣𝑦 = 𝑑𝑦/𝑑𝑡, where 𝒙(𝑡) =
(
𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)

)
represents the

trajectory of the plasma, we can integrate both sides of equations (17) and (18) with respect to the 𝑡
variable, and thus we obtain


𝑥 = −𝑣⊥

𝜔𝑐

cos(𝜔𝑐𝑡) = −𝑅𝐿 cos(𝜔𝑐𝑡),

𝑦 =
𝑣⊥
𝜔𝑐

sen(𝜔𝑐𝑡) = 𝑅𝐿 sen(𝜔𝑐𝑡).
(19)

In the equations above, we have that 𝑅𝐿 =
𝑣⊥
𝜔𝑐

=
𝑣⊥𝑚

𝑞𝐵
is the Larmor radius, which is the

transverse radius of the helical orbit of the circular motion of these charged particles in a magnetic
field (Figure 5). So, for scales larger than the Larmor radius, the plasma has properties of a fluid.
This circular motion is described by the equations in (19) and the particles have constant velocity in
the 𝑧 direction of the magnetic field.

4 The Grad-Shafranov equation
Bearing in mind the previous explanations, we first observe that, since the Tokamak is a compact

toroidal surface, in order to obtain the Grad-Shafranov equation we will consider 𝑟, 𝜃, 𝑧 the usual
cylindrical coordinates and 𝒆𝑟 , 𝒆𝜃 and 𝒆𝑧 the corresponding unit vectors of the orthonormal system.
Also, as the plasma travels in a helical orbit, we shall assume an axial symmetry in the toroidal
direction, that is,

𝜕𝐹

𝜕𝜃
= 0,
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Figura 5: The Larmor radius is the transverse radius of the helical orbit (1) of the particle motion in
a magnetic field (2).

for any function 𝐹. Here, we will use the equations
∇ · 𝑩 = 0,

∇ × 𝑩 = 𝜇0𝑱,

𝑱 × 𝑩 = ∇𝑝

(20)

of the ideal MHD model in equilibrium (𝑑𝒗/𝑑𝑡 = 0) to obtain the Grad-Shafranov equation. Indeed,
since ∇ · 𝑩 = 0, considering a vector potential 𝑨 = (𝐴𝑟 , 𝐴𝜃 , 𝐴𝑧), we saw in (2) that

𝑩 = ∇ × 𝑨 =

(
𝜕

𝜕𝑟
𝒆𝑟 +

1
𝑟

𝜕

𝜕𝜃
𝒆𝜃 +

𝜕

𝜕𝑧
𝒆𝑧

)
× (𝐴𝑟 𝒆𝑟 + 𝐴𝜃 𝒆𝜃 + 𝐴𝑧 𝒆𝑧)

= 𝒆𝑟 ×
𝜕

𝜕𝑟
(𝐴𝑟 𝒆𝑟 + 𝐴𝜃 𝒆𝜃 + 𝐴𝑧 𝒆𝑧) +

1
𝑟
𝒆𝜃 ×

𝜕

𝜕𝜃
(𝐴𝑟 𝒆𝑟 + 𝐴𝜃 𝒆𝜃 + 𝐴𝑧 𝒆𝑧)

+ 𝒆𝑧 ×
𝜕

𝜕𝑧
(𝐴𝑟 𝒆𝑟 + 𝐴𝜃 𝒆𝜃 + 𝐴𝑧 𝒆𝑧)

= − 𝜕𝐴𝜃

𝜕𝑧
𝒆𝑟 +

(
𝜕𝐴𝑟

𝜕𝑧
− 𝜕𝐴𝑧

𝜕𝑟

)
𝒆𝜃 +

1
𝑟

(
𝐴𝜃 + 𝑟

𝜕𝐴𝜃

𝜕𝑟

)
𝒆𝑧,

from where we get

𝑩 = ∇ × (𝐴𝜃𝒆𝜃) +
(
𝜕𝐴𝑟

𝜕𝑧
− 𝜕𝐴𝑧

𝜕𝑟

)
𝒆𝜃 . (21)

Consider the following quantities which characterizes magnetic surfaces:
∇Θ =

1
𝑟
𝒆𝜃 ,

𝜓 = −𝑟𝐴𝜃 ,

𝑓 = 𝑟

(
𝜕𝐴𝑟

𝜕𝑧
− 𝜕𝐴𝑧

𝜕𝑟

)
.
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With the expressions above, we can write (21) as

𝑩 = (∇Θ × ∇𝜓) + 𝑓∇Θ. (22)

So, the current density is expressed as

𝜇0𝑱 = ∇ × 𝑩 = ∇ ×
[
(∇Θ × ∇𝜓) + 𝑓∇Θ

]
=∇ × (∇Θ × ∇𝜓) + ∇ × ( 𝑓∇Θ)

=∇ ×
[
1
𝑟
𝒆𝜃 ×

(
𝜕𝜓

𝜕𝑟
𝒆𝑟 +

𝜕𝜓

𝜕𝑧
𝒆𝑧

)]
+ 𝑓 (∇ × ∇Θ) + (∇ 𝑓 × ∇Θ)

=∇ ×
(
1
𝑟

𝜕𝜓

𝜕𝑧
𝒆𝑟 −

1
𝑟

𝜕𝜓

𝜕𝑟
𝒆𝑧

)
+ (∇ 𝑓 × ∇Θ)

=

(
1
𝑟

𝜕2𝜓

𝜕𝑧2 − 1
𝑟2

𝜕𝜓

𝜕𝑟
+ 1
𝑟

𝜕2𝜓

𝜕𝑟2

)
𝒆𝜃 + (∇ 𝑓 × ∇Θ),

i.e,

𝜇0𝑱 =

(
𝜕2𝜓

𝜕𝑧2 − 1
𝑟

𝜕𝜓

𝜕𝑟
+ 𝜕2𝜓

𝜕𝑟2

)
∇Θ + (∇ 𝑓 × ∇Θ), (23)

Defining the elliptic differential operator Δ∗ as

Δ∗ :=
𝜕2

𝜕𝑧2 − 1
𝑟

𝜕

𝜕𝑟
+ 𝜕2𝜓

𝜕𝑟2 ,

we can write (23) in the form

𝜇0𝑱 = Δ∗𝜓∇Θ + (∇ 𝑓 × ∇Θ). (24)

On the other hand, from the third equation of (20) and the fact that 𝑑𝒗/𝑑𝑡 = 0, it follows from
equation (7) that

∇𝑝 = 𝑱 × 𝑩,

from which, assuming 𝜇0 = 1, we obtain that
𝑩 · ∇𝑝 = 𝑩 · (𝑱 × 𝑩) = 0,

𝑱 · ∇𝑝 = 𝑱 · (𝑱 × 𝑩) = 0.
(25)

The equations above show that the field lines of the magnetic induction and of the current density
lie on isobaric surfaces, that is, surfaces where the pressure is constant. As a result of this fact, these
surfaces are also called magnetic surfaces. The plasma boundary is then defined as the outermost
closed magnetic surface entirely contained in the vacuum vessel of the Tokamak and, for the optimal
plasma confinement, these surfaces must have a toroidal shape. Thus, by using (22) and (25), we
get the following relations:

FARIA, J. C. O.; PRATES, M. V. Electromagnetism, magnetohydrodynamics and the Tokamak mathematics. C.Q.D.– Revista Eletrônica Paulista
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𝑩 · ∇𝑝 =
[
(∇Θ × ∇𝜓) + 𝑓∇Θ

]
· ∇𝑝

=

(
1
𝑟
𝒆𝜃 × ∇𝜓

)
· ∇𝑝 + (𝐵𝜃𝒆𝜃 · ∇𝑝)

and
𝑱 · ∇𝑝 =

[
Δ∗𝜓∇Θ + (∇ 𝑓 × ∇Θ)

]
· ∇𝑝

=(Δ∗𝜓∇Θ · ∇𝑝) +
(
∇ 𝑓 × 1

𝑟
𝒆𝜃

)
· ∇𝑝,

from which we conclude that

𝑩 · ∇𝑝 =
1
𝑟
𝒆𝜃 · (∇𝜓 × ∇𝑝) = 0 (26)

and
𝑱 · ∇𝑝 =

1
𝑟
𝒆𝜃 · (∇ 𝑓 × ∇𝑝) = 0. (27)

Since we assumed an axial symmetry, we have that ∇𝜓 and ∇𝑝 are perpendicular to 𝒆𝜃 . Then,
from equation (26) we get that

∇𝜓 × ∇𝑝 = 0,

i.e, the vectors ∇𝜓 and ∇𝑝 are parallel. Similarly for equation (27), we have that ∇ 𝑓 and ∇𝑝 are
perpendicular to 𝒆𝜃 and the identity

∇ 𝑓 × ∇𝑝 = 0

implies that the vectors ∇ 𝑓 and ∇𝑝 are parallel, from where we obtain that ∇ 𝑓 and ∇𝜓 are also
parallel. Therefore, the pressure 𝑝 and the function 𝑓 depend only on the poloidal flux, that is,
𝑝 = 𝑝(𝜓) and 𝑓 = 𝑓 (𝜓). Thus, applying the chain rule we can write

∇𝑝 = ∇𝜓 𝑑𝑝

𝑑𝜓
e ∇ 𝑓 = ∇𝜓 𝑑𝑓

𝑑𝜓
. (28)

Substituting the expressions of 𝑩 and 𝑱 obtained in (21) and (23) in the third equation of (20)
and considering (28), we obtain

∇𝜓 𝑑𝑝

𝑑𝜓
=

[
Δ∗𝜓∇Θ +

(
∇𝜓 𝑑𝑓

𝑑𝜓
× ∇Θ

)]
×
[
(∇Θ × ∇𝜓) + 𝑓∇Θ

]
= (Δ∗𝜓∇Θ) × (∇Θ × ∇𝜓) +

(
∇𝜓 𝑑𝑓

𝑑𝜓
× ∇Θ

)
× ( 𝑓∇Θ)

=
1
𝑟2 (Δ∗𝜓 𝒆𝜃) × (𝒆𝜃 × ∇𝜓) + 𝑓

𝑟2
𝑑𝑓

𝑑𝜓

[
(∇𝜓 × 𝒆𝜃) × 𝒆𝜃

]
,

that is,
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∇𝜓 𝑑𝑝

𝑑𝜓
= − 1

𝑟2Δ
∗𝜓∇𝜓 − 𝑓

𝑟2
𝑑𝑓

𝑑𝜓
∇𝜓.

Hence, 𝜓 is a solution of the differential equation

Δ∗𝜓 = −𝑟2 𝑑𝑝

𝑑𝜓
− 𝑓

𝑑𝑓

𝑑𝜓
. (29)

The equation (29) is a nonlinear second order partial differential equation called Grad-Shafranov
equation, which describes the toroidal equilibrium of the plasma inside the Tokamak. This equation
can be solved when the functions 𝑝(𝜓), 𝑓 (𝜓) and the boundary conditions have been assigned. It
is typical to search for numerical solutions of equation (29), but there exist some known analytic
solutions of the Grad-Shafranov equation [3], [4], [5]. In [5], for example, analytical solutions of
the homogeneous Grad-Shafranov equation were obtained by using Green’s functions.

5 Concluding remarks
In this paper, we showed how Maxwell’s equations and magnetohydrodynamics relate to describe

the motion of a plasma inside the Tokamak, which behaves like a fluid in certain scales. From this
study, we also presented an alternative way to derive the Grad-Shafranov equation using the potentials
associated with the electric and magnetic fields, instead of searching for the explicit expressions of
𝑬 and 𝑩.

Currently, there are over 20 active Tokamaks in several countries, the largest of them being the
Joint European Torus (JET), located in Culham, England. This Tokamak was the first to successfully
produce plasma in 1983, reaching a temperature higher than anywhere in our solar system. There are
also a few Tokamak experiments in Brazil: the middle size Tokamak à Chauffage Alfvén Brésilien
(TCABR) at the Physics Institute of University of São Paulo and the Experimento Tokamak Esférico
(ETE) at the National Institute for Space Research.

One of the most important experimental programs nowadays is the International Thermonuclear
Experimental Reactor: the ITER Tokamak. This 10 billion euro project that has the support of
countries like China, Japan, England and the United States, is under construction in France and
it is expected to be able to produce its first plasma in 2025. The expectation is that this device
will be capable of exploring the operation modes of an advanced Tokamak, characterized by high
pressure, long plasma confinement periods and sufficient conditions to maintain a self sustainable
fusion reaction.

6 Referências
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