

ISSN 2316-9664 v. 23, n. 1, jul. 2023 Artigo de Iniciação Científica

Leonardo Hannas de Carvalho Santos ICMC/EESC

Universidade de São Paulo leonardohannas@usp.br

Equações diferenciais impulsivas: uma abordagem sobre estabilidade e métodos numéricos

Impulsive differential equations: an approach on stability and numerical methods

Resumo

O artigo pode ser dividido em três partes:

→ Equações Diferenciais Impulsivas (ou simplesmente EDIs): conceitos fundamentais, como a descrição de sistemas com impulsos pré-estabelecidos, a existência e continuação de soluções no intervalo (ou no espaço vetorial) de análise, a dependência de valores iniciais, além da abordagem de alguns exemplos de aplicação prática.

→ Estabilidade de soluções de EDIs: são definidos os tipos de estabilidade, além dos seus respectivos critérios. Também é apresentado o Teorema de Lyapunov, o qual analisa a estabilidade de uma solução partindo-se da definição de funções de energia.

 \rightarrow Métodos numéricos para a resolução de EDIs: são analisados alguns métodos computacionais para a resolução de problemas desta natureza. Por exemplo, os métodos de passo constante, como os métodos de Runge-Kutta.

Palavras-chave: EDIs. Impulsos. Lyapunov. Método de Runge-Kutta.

Abstract

This paper can be divided in three parts:

 \rightarrow Impulsive Differential Equations (or simply IDEs): fundamental concepts, such as the description of systems with pre-established impulses, the existence and continuity of solutions in the interval (or in the vectorial space) analyzed, the initial value dependence and the approach of some practical examples.

 \rightarrow Stability of solutions of IDEs: the types of stability are defined as well as their criteria. In addition, the Lyapunov's Theorem is presented in order to analyse the stability of a given solution, initiating by the definition of energy's functions.

 \rightarrow Numerical methods for solving IDEs: some of the existing methods are analysed. For example, the step constant methods such as the Runge-Kutta methods.

Keywords: IDEs. Impulses. Lyapunov. Runge-Kutta Method.

Artigo recebido em set. 2022 e aceito em fev. 2023

1 Introdução

Sistemas impulsivos estão presentes em diversos ramos da ciência e são bastante úteis para a modelagem matemática de sistemas reais. Tal variedade pode ser verificada analisando-se alguns exemplos de diferentes áreas, como o aumento impulsivo de uma população de peixes, modelos impulsivos em redes neurais, ou ainda através da flutuação de preços através de impulsos. A seguir, serão analisados um pouco mais detalhadamente os modelamentos matemáticos de cada um dos exemplos citados, através da utilização de efeitos impulsivos.

1.1 Aumento impulsivo de uma população de peixes

Considerando-se uma população de peixes homogênea num lago que liga duas porções de um riacho, o comportamento de tal população é descrito da seguinte maneira

$$\dot{N}(t) = N \times F(N) + u \tag{1}$$

em que N(t) é o tamanho da população no instante t, $N(t) \times F(N(t))$ é a taxa natural de crescimento da população e $u \ge 0$ é o fluxo constante de peixes do riacho para o lago (LIU, 1995 apud STAMOVA; STAMOV, 2016, p. 2).

A equação (1) não considera efeitos bruscos sobre o número de indivíduos da população em questão. Efeitos como o envenenamento de indivíduos por contaminação do lago, ou o chegar de uma ninhada deverão ser considerados. Com isso, X. Liu propõe que nos instantes de tempo t_k , $k \in \mathbb{N}^*$, ocorrem ninhadas, que serão interpretadas como sendo aumentos impulsivos da população de peixes. Logo, da equação (1), tem-se o sistema (2):

$$\begin{cases} \dot{N}(t) = N \times F(N) + u, \ t \neq t_k, \ t \ge 0\\ \Delta N(t_k) = N(t_k^+) - N(t_k^-) = I_k(N(t_k)), \ k \in \mathbb{N}^* \end{cases}$$
(2)

em que $N(t_k^-) = N(t_k)$ e $N(t_k^+)$ são as populações antes e depois do impulso, e $I_k \in \mathbb{R}$ são funções que caracterizam a magnitude do impulso no instante t_k . Obviamente, se $I_k > 0$, então há um aumento da população e, se $I_k < 0$, tem-se sua diminuição. Pode-se mostrar, por fim, que a existência dos impulsos pode configurar estabilidade à população de peixes.

1.2 Modelos impulsivos de redes neurais

Num contexto geral redes neurais são eficientes na identificação de padrões e na previsão de dados. Em 1988, Chia e Yang propuseram uma nova classe de sistemas de processamento de informações, as *CNN's* - "*Cellular Neural Networks*" (ou "*Redes Neurais Celulares*"). Tais redes neurais são aplicadas em programação linear e não-linear, otimização, reconhecimento de padrões, visão computacional, etc. As equações a seguir descrevem uma "*Hopfield-type CNN*"

$$\dot{x_i}(t) = -c_i x_i(t) + \sum_{j=1}^n a_{ij} f_j(x_j(t)) + I_i$$

ou, considerando-se um atraso $\tau(t)$, tem-se

$$\dot{x_i}(t) = -c_i x_i(t) + \sum_{j=1}^n a_{ij} f_j(x_j(t)) + \sum_{j=1}^n b_{ij} f_j(x_j(t-\tau_j(t))) + I_i$$

em que $i \in \mathbb{N}^*$ corresponde ao índice da unidade na rede neural, $x_i(t)$ corresponde ao estado da i-ésima unidade no instante t, $f_j(x_j(t))$ denota a saída da j-ésima unidade no instante t, a_{ij} refere-se à força (ou peso de ponderação) da j-ésima unidade sobre a i-ésima unidade no tempo t. Analogamente, b_{ij} corresponde à força da unidade x_j sobre x_i no instante de tempo $t - \tau_j(t)$, I_i é a tendência de comportamento externa sobre x_i , $\tau_j(t)$ caracteriza o atraso na transmissão da informação na j-ésima unidade, com $0 \le \tau_j(t) \le \tau = constante$. Por fim, c_i representa a taxa na qual a i-ésima unidade atinge o seu potencial de descanso, quando desconectada da rede e isolada de interferências externas.

Adicionando-se perturbações instantâneas sobre as unidades x_i nos instantes de tempo t_k ($k \in \mathbb{N}^*$) tem-se os seguintes sistemas

$$\begin{cases} \dot{x}_i(t) = -c_i x_i(t) + \sum_{j=1}^n a_{ij} f_j(x_j(t)) + I_i, \ t \neq t_k, \ t \ge 0\\ \Delta x_i(t) = x_i(t_k^+) - x_i(t_k) = P_{ik}(x_i(t_k)), \ k \in \mathbb{N}^* \end{cases}$$
(3)

ou, para modelos impulsivos de CNN com atrasos, a primeira equação de (3) será dada por

$$\dot{x}_i(t) = -c_i x_i(t) + \sum_{j=1}^n a_{ij} f_j(x_j(t)) + \sum_{j=1}^n b_{ij} f_j(x_j(t-\tau_j(t))) + I_i, \quad t \neq t_k, \ t \ge 0$$

em que t_k são os instantes de tempo referentes às perturbações impulsivas e $P_{ik}(x_i(t_k))$ são as variações abruptas no estado $x_i(t)$ em $t = t_k$.

1.3 Modelo impulsivo de flutuação de preços

Sendo p(t) o preço de um produto qualquer no mercado, a seguinte equação foi proposta

$$\frac{1}{p}\frac{dp}{dt} = F(D(p_d), S(p_s)), \ t \ge 0$$
(4)

em que *D* e *S* são, respectivamente, a demanda e a oferta (*"supply"*) do produto em questão (MACKEY; BELAIR, 1989 apud STAMOVA; STAMOV, 2016, p. 4).

A função de variação de preço F(D, S) satisfaz às seguintes condições

$$\begin{cases} F(D,S) = 0 \iff D = S \\ \frac{dF}{dD} \ge 0, \ \frac{dF}{dS} \le 0 \end{cases}.$$

Um caso simples pode ser dado por: F(D, S) = D - S.

Finalmente, adicionando-se variações abruptas de preço na equação (4), tem-se o seguinte sistema:

$$\begin{cases} \frac{\dot{p}(t)}{p(t)} = F\left(D\left(p(t)\right), S\left(p(t)\right)\right), \ t \neq t_k\\ \Delta p(t_k) = p(t_k^+) - p(t_k) = P_k\left(p(t_k)\right), \ k \in \mathbb{N}^* \end{cases}$$

Após a apresentação de algumas possíveis aplicações de modelagem através de sistemas impulsivos, as próximas seções abordarão, respectivamente, a teoria básica das EDIs, as condições de estabilidade e fronteira, as Funções de Lyapunov e o Teorema de Estabilidade de Lyapunov. Finalmente, serão

tratados os métodos numéricos de Runge-Kutta para a resolução de EDOs e, a seguir, será proposto um algoritmo computacional, visando à resolução de EDIs.

2 Teoria Básica - Equações Diferenciais Ordinárias Impulsivas

Considerando-se o seguinte sistema, denota-se por $x(t) = x(t; t_0, x_0)$ a solução de (5), satisfazendose a condição inicial $x(t_0^+; t_0, x_0) = x_0$.

$$\begin{cases} \dot{x}(t) = f(t,x), \ t \neq \tau_k(x(t)) \\ \Delta x(t) = I_k(x(t)), \ t = \tau_k(x(t)), \ k \in \mathbb{Z}^* \end{cases}$$
(5)

Os pontos onde se verifica a existência de impulsos são definidos pelos conjuntos σ_k , dados por

$$\sigma_k = \{(t, x) | t = \tau_k(x), x \in \Omega\}$$
 (Hipersuperfícies).

Além disso, denota-se a seguinte convenção:

$$x(t_k^-) = x(t_k) \ e \ x(t_k^+) = x(t_k) + I_k(x(t_k)),$$

sendo $x(t_k^-) e x(t_k^+)$ os limites laterais à esquerda e à direita, respectivamente.

Em seguida, como, usualmente, a variável *t* designa tempo, a seguinte relação de ordem é assumida como sendo válida:

$$\pi_k < \tau_{k+1}(x) \ e \ \lim_{k \to \pm \infty} \tau_k(x) = \pm \infty, \ x \in \Omega$$

Por fim, assume-se que cada solução x(t) intersecta cada hipersuperfície σ_k em, no máximo, uma única vez. Partindo-se dessa hipótese, verifica-se a ausência do fenômeno de batimento e o sistema (5) é reduzido a

$$\begin{cases} \dot{x}(t) = f(t, x), \ t \neq t_k \\ \Delta x(t) = I_k(x(t)), \ t = t_k, \ k \in \mathbb{Z}^* \end{cases}$$
(6)

em que os impulsos ocorrem em $t_k < t_{k+1} (k \in \mathbb{Z}^*)$ e $\lim_{k \to \pm \infty} t_k = \pm \infty$.

A seguir, serão apresentados teoremas e definições para o estudo de EDIs com os momentos impulsivos fixados. Consideraremos, portanto, $J_1 = [t_0, \omega)$ e $J_2 = [t_0, \widetilde{\omega})$, com $J_1 \subseteq J_2$.

Definição 1 Se $x(t) = x(t; t_0, x_0) e y(t) = y(t; t_0, x_0)$ são duas soluções do sistema (6), nos intervalos $J_1 e J_2$, respectivamente, $e x(t) = y(t), \forall t \in J_1$, então y(t) é dita a continuação de x(t) no intervalo J_2 (continuação à direita).

Teorema 1 A solução $x(t) = x(t; t_0, x_0)$ é dita ser continuável no intervalo J_2 , se existir a continuação y(t) de x(t) em J_2 . Caso contrário, $x(t) = x(t; t_0, x_0)$ é dita ser não continuável e o intervalo J_1 é o máximo intervalo de existência de x(t).

Definição 2 A solução $x(t) = x(t; t_0, x_0)$ do sistema (10) é dita ser única quando, dada qualquer outra solução $y(t) = y(t; t_0, y_0)$, x(t) = y(t) dentro do intervalo comum de existência.

2.1 Exemplos

2.1.1 (LAKSHMIKANTHAM; BAĬNOV; SIMEONOV, 1989 apud BONOTTO, 2005, p. 7)

Dada a condição inicial de x(0) = 0, resolver a seguinte EDI.

$$\begin{cases} \dot{x} = 1 + x^2, \ t \neq \frac{k\pi}{4} \\ \Delta x(t) = -1, \ t = \frac{k\pi}{4}, \ k \in \mathbb{Z} \end{cases}$$

Resolvendo-se apenas a EDO, desconsiderando-se os efeitos impulsivos, tem-se

$$\dot{x} = 1 + x^2 \longrightarrow \frac{dx}{dt} = 1 + x^2.$$

Pela definição de diferencial, obtém-se $dx = \frac{dx}{dt}dt$ e, portanto, $dx = (1 + x^2)dt$. É feita, então, a separação de variáveis e, em seguida, a integração.

$$\frac{dx}{1+x^2} = dt$$

o que implica que

$$\int \frac{dx}{1+x^2} = \int dt.$$

Logo,

$$\tan^{-1}(x) = t + c,$$

em que *c* é a constante de integração. Portanto, x(t) = tan(t + c). Aplicando-se a condição inicial fornecida pelo enunciado, obtém-se o valor da constante de integração c = 0.

Finalmente, a solução da EDO, desconsiderando os impulsos, será dada por x(t) = tan(t) e, considerando-se o impulso $\Delta x = -1$ para $t = \frac{k\pi}{4}$, a solução do sistema impulsivo será

$$x(t) = \tan\left(t - \frac{k\pi}{4}\right), \ t \in \left[\frac{k\pi}{4}, \frac{(k+1)\pi}{4}\right]$$

Graficamente, o comportamento do sistema é representado a seguir.

Figura 1: Descontinuidades para $t = \frac{k\pi}{4}$, com $k \in \mathbb{Z}$. (Fonte: Elaborado pelo compilador Python)

00

2.1.2 (LAKSHMIKANTHAM; BAĬNOV; SIMEONOV, 1989 apud BONOTTO, 2005, p. 9)

Sendo $t \ge 0$ e $k \in \mathbb{Z}_+$, resolver a EDI dada por

$$\begin{cases} \dot{x} = 0, \ t \neq \tau_k(x) \\ \Delta x = x^2 sgn(x) - x, \ t = \tau_k(x). \end{cases}$$

Considere, também, que a superfície S_k : $t = \tau_k(x)$ seja descrita por

$$\tau_k(x) = x - 6k, \quad \operatorname{com} |x| < 3.$$

A função sgn(x) é dada por

$$sgn(x) = \begin{cases} 1, \ x > 0 \\ 0, \ x = 0 \\ -1, \ x < 0 \end{cases}$$

Primeiramente, serão calculadas algumas superfícies impulsivas Sk:

$$\begin{cases} k = 0 \rightarrow S_0 : \tau_0(x) = x \\ k = 1 \rightarrow S_1 : \tau_1(x) = x - 6 \end{cases}$$

Além disso, como |x| < 3, então -3 < x < 3.

Considerando-se apenas $t \ge 0$, tem-se

- As soluções x(t) com condição inicial x(0) = x₀, tais que |x₀| ≥ 3 não sofrem impulso, pois não intersectam as superfícies S_k.
- Para as soluções que se iniciam em (0, x₀), com 1 < x₀ < 3, tais soluções sofrem o efeito impulsivo um número finito de vezes. Por exemplo, a solução x(t), tal que x(0) = x₀ = ⁴√2, representada no gráfico a seguir, sofre três impulsos.

Figura 2: Descontinuidades para tempos variáveis. (Fonte: Elaborado pelo compilador Python)

Na cor azul estão representadas as superfícies impulsivas $S_0 \in S_1$ e, em vermelho, está representado o comportamento da solução x(t), cuja condição inicial é $x_0 = \sqrt[4]{2} \in]1, 3[$.

• Se o ponto inicial $x(0) = x_0$ pertencer ao intervalo]0,1[, a solução x(t) intersectará as superfícies S_k um número infinito de vezes. Por conseguinte, sofrerá infinitos impulsos. O gráfico a seguir ilustra a situação para $x_0 = \frac{1}{2}$.

Figura 3: Descontinuidades para tempos variáveis. (Fonte: Elaborado pelo compilador Python)

É notável que { $x(t_k)$ } é uma Progressão Geométrica infinita cujo primeiro termo é $x(0) = x_0 = \frac{1}{2}$ e cuja razão é $q = \frac{1}{2}$. Ademais, $\lim_{k \to +\infty} t_k = +\infty$ e $\lim_{k \to +\infty} x(t_k) = 0$.

Para as soluções em que −1 < x₀ < 0, também ocorrerá um número infinito de impulsos. Além disso, lim_{k→+∞} t_k = 6 e lim_{k→+∞} x(t_k) = 0. Adotemos o caso em que x₀ = −¹/₂. O gráfico a seguir ilustra o comportamento da solução x(t) para essa condição inicial em particular.

Figura 4: Descontinuidades para tempos variáveis. (Fonte: Elaborado pelo compilador Python)

Ampliando-se o gráfico anterior, visando à obtenção de maiores detalhes do comportamento da solução x(t) em vermelho, tem-se:

Figura 5: Descontinuidades para tempos variáveis. (Fonte: Elaborado pelo compilador Python)

3 Estabilidade e Fronteira

Dado $k \in \mathbb{Z}^*$, considere o sistema impulsivo dado por

$$\begin{pmatrix} \dot{x}(t) = f(t, x), \ t \neq t_k \\ \Delta x = I_k(x), \ t = t_k \end{cases}.$$

Uma solução será dada por $\psi(t) = \psi(t; t_0, \psi_0)$, com $\psi(t_0^+) = \psi_0 \in \Omega$. Tal solução $\psi(t)$ pode ser classificada, segundo I. Stamova e G. Stamov (2016), em:

a) Estável: se um ponto inicial qualquer $x_0 \in \Omega$ estiver próximo do valor inicial $\psi(t_0^+)$ da solução e, se para todo *t* posterior ao tempo inicial $t_0, x(t)$ se mantiver próximo da solução $\psi(t)$, então a solução é dita estável. Matematicamente, tem-se:

$$\forall t_0 \in \mathbb{R}, \forall \varepsilon > 0, \exists \delta = \delta(t_0, \varepsilon) > 0$$

$$\left(\forall x_0 \in \Omega : \left\|x_0 - \psi(t_0^+)\right\| < \delta\right) \left(\forall t \ge t_0\right) : \left\|x(t; t_0, x_0) - \psi(t)\right\| < \varepsilon .$$

- b) Uniformemente estável: o valor de δ no item *a*) deve ser independente de $t_0 \in \mathbb{R}$.
- c) Atrativa: à medida em que *t* aumenta, o ponto inicial x_0 tende a se aproximar da solução $\psi(t)$. Matematicamente,

$$\begin{aligned} & \left(\forall t_0 \in \mathbb{R} \right), \left(\exists \lambda = \lambda(t_0) > 0 \right) \\ & \left(\forall x_0 \in \Omega : \left\| x_0 - \psi(t_0^+) \right\| < \lambda \right), \lim_{t \to \infty} \left\| x(t; t_0, x_0) - \psi(t) \right\| < \varepsilon \end{aligned}$$

d) Equiatrativa: o ponto inicial x_0 se aproxima da solução $\psi(t)$ somente para valores de $t \ge t_0 + T$, sendo *T* um valor positivo. Numa linguagem formal, tem-se:

$$\begin{aligned} \left(\forall t_0 \in \mathbb{R}\right), \left(\exists \lambda = \lambda(t_0) > 0\right), \left(\forall \varepsilon > 0\right), \left(\exists T = T(T_0, \varepsilon) > 0\right) \\ \left(\forall x_0 \in \Omega : \left\| x_0 - \psi(t_0^+) \right\| < \lambda\right) \\ \left(\forall t \ge t_0 + T\right) : \left\| x(t; t_0, x_0) - \psi(t) \right\| < \varepsilon \end{aligned}$$

- e) Uniformemente atrativa: os valores de λ e *T* no item *d*) devem ser independentes de $t_0 \in \mathbb{R}$.
- f) Assintoticamente estável: deve ser estável e atrativa.
- g) Uniformemente assintoticamente estável: deve ser uniformemente atrativa e assintoticamente estável.
- h) Exponencialmente estável: dado um ponto inicial qualquer x_0 , ele se aproxima da solução $\psi(t)$ de maneira exponencial, adicionando-se um fator de correção $\gamma \ge 0$. Matematicamente, tem-se:

$$(\exists \lambda > 0) (\forall \alpha > 0) (\exists \gamma = \gamma(\alpha) > 0) (\forall t_0 \in \mathbb{R})$$
$$(\forall x_0 \in \Omega : ||x_0 - \psi(t_0^+)|| < \alpha) (\forall t \ge t_0)$$
$$||x(t; t_0, x_0) - \psi(t)|| < \gamma(\alpha) ||x_0 - \psi(t_0^+)|| e^{-\lambda(t-t_0)}$$

4 Funções de Lyapunov

As funções de Lyapunov, também conhecidas como Funções de Energia e usualmente representadas por V(x), lidam ainda com a análise de estabilidade das soluções de equações diferenciais. Pode-se dizer que tais funções tornam o estudo abordado no *Seção 3* deste artigo algo menos teórico e um pouco mais prático e palpável.

Assim, sendo dada a equação $\dot{x} = f(x) \in \mathbb{R}^2$ e sendo x^* um ponto de equilíbrio, Richard Pates (vide item [3] das *Referências*) representa duas possíveis trajetórias.

Figura 6: Trajetórias com diferentes condições iniciais A e B convergindo para o ponto comum de estabilidade x^* . (Fonte: Elaborado pelo compilador Geogebra)

A seguir, estão representadas duas superfícies equienergéticas, bem como uma trajetória, solução de $\dot{x} = f(x)$.

Figura 7: Superfícies equipotenciais de Lyapunov e a trajetória de $\dot{x} = f(x)$. (Fonte: Elaborado pelo compilador Geogebra)

Uma função V(x) é dita ser de Lyapunov, se obedecer às seguintes propriedades:

- $V(x^*) = 0;$
- $V(x) > 0, \forall x \neq x^*;$
- Se $\nabla V(x) \cdot \dot{x} < 0$, então as trajetórias vão de valores superiores a valores inferiores de V.

5 Teorema de Estabilidade de Lyapunov

Pates, em vídeo gravado para a plataforma *YouTube*, vide item [3] das *Referências*, define as Funções de Lyapunov, de acordo com o seguintes tópicos:

Figura 8: Conjunto aberto $\Omega \subset \mathbb{R}^2$. (Fonte: Elaborado pelo compilador Geogebra)

Seja $\Omega \subset \mathbb{R}^2$, tal que o conjunto das funções de Lyapunov $V(x) \subset \Omega$. Assim, dados $\dot{x} = f(x)$ e V(x) definidos em Ω ,

- 1. V(x) = 0, para $x = x^*$;
- 2. $V(x) > 0, \forall x \in \Omega \text{ e } x \neq x^*;$
- 3. se $\dot{V}(x) \doteq \nabla V(x) \cdot f(x) \le 0$, $\forall x \in \Omega \Rightarrow x^*$ é estável. Obs.: se $\dot{V}(x) \le 0$, então a solução permanece dentro do conjunto aberto Ω .
- 4. Se V(x) < 0, ∀x ∈ Ω − {x*} ⇒ x* é localmente e assintoticamente estável.
 Obs: Se V(x) < 0 (estritamente menor do que zero), então a solução não apenas permanece no espaço Ω, como também converge para o ponto de estabilidade x* ∈ Ω.
- 5. Se $\Omega = \mathbb{R}^n (\mathbb{R}^2 \text{ neste exemplo}) \in V(x) \to \infty$ quando

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \to \infty,$$

então x^* é global e assintoticamente estável.

5.1 Exemplo

Provar, utilizando o Teorema de Lyapunov, que o sistema constituído pelo pêndulo simples da imagem a seguir é estável.

Figura 9: Pêndulo Simples. (Fonte: Elaborado pelo compilador Google Drawings)

Prova: Das relações básicas da Cinemática, tem-se:

$$\begin{cases} v = L\omega = L\frac{d\theta}{dt} \\ a = \frac{dv}{dt} = L\frac{d^2\theta}{dt^2} \end{cases}$$

Ademais, pela Segunda Lei de Newton, tem-se

$$-mg\sin\theta = ma = mL\frac{d^2\theta}{dt^2}.$$

Multiplicando-se ambos os lados da igualdade por L e remanipulando-se a equação, obtém-se

$$mL^2\ddot{\theta} + mgL\sin\theta = 0.$$

Portanto, esta última equação descreve o comportamento físico do sistema analisado. Ainda desta equação, ao se isolar a aceleração angular do pêndulo, obtém-se $\ddot{\theta} = -\frac{g}{L}\sin\theta$. Definindo-se, portanto, a matriz das variáveis de estado $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$, tem-se

$$\frac{dx}{dt} = \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \dot{\theta} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{L}\sin\theta \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{L}\sinx_1 \end{bmatrix} .$$

Logo,

$$\underbrace{\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\underbrace{-\frac{x}{L} \sin x_1}} = \underbrace{\begin{bmatrix} x_2 \\ -\frac{x}{L} \sin x_1 \end{bmatrix}}_{\underbrace{-\frac{x}{L} \sin x_1}}$$

SANTOS, L. H. C. Equações diferenciais impulsivas: uma abordagem sobre estabilidade e métodos numéricos. C.Q.D.- Revista Eletrônica Paulista de Matemática, Bauru, v. 23, n. 1, p. 111–140, jul. 2023.

ou seja,

$$\dot{x} = f(x) \quad .$$

Ainda sobre a definição, o conjunto aberto $\Omega(x_1, x_2)$ é dado por

$$\Omega = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : -\pi < x_1 < \pi, ||x_2|| < k \right\}, \ com \ k \in \mathbb{R}.$$

Além disso, o ponto $x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \Omega$ é o ponto de equilíbrio do sistema.

Assim, define-se a Função de Lyapunov do sistema como sendo a soma das energias potencial e cinética. Portanto,

$$V(\theta) = mgL(1 - \cos\theta) + \frac{1}{2}mv^2$$

= $mgL(1 - \cos\theta) + \frac{1}{2}mL^2\omega^2$
= $mgL(1 - \cos\theta) + \frac{1}{2}mL^2(\dot{\theta})^2$.

No espaço Ω , tem-se

$$V(x) = mgL(1 - \cos x_1) + \frac{1}{2}mL^2x_2^2.$$

Finalmente, para que seja possível concluir sobre a estabilidade do sistema analisado neste exemplo, basta analisar a função V(x) e checar se ela cumpre todos os requisitos do Teorema de Lyapunov.

1.
$$x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow V(x^*) = mgL(1 - \cos 0) + \frac{1}{2}mL^20^2 = 0 + 0 = 0.$$

2. Para todo $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \Omega$, com $x \neq x^*$, $V(x) > 0$.

3. Vale

$$\dot{V}(x) = \nabla V(x) \cdot \dot{x} = \begin{bmatrix} \frac{\partial V}{\partial x_1} \\ \frac{\partial V}{\partial x_2} \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ -\frac{g}{L} \sin x_1 \\ mL^2 x_2 \end{bmatrix}$$
$$= \begin{bmatrix} mgL \sin x_1 \\ mL^2 x_2 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ -\frac{g}{L} \sin x_1 \end{bmatrix}$$
$$= mgL x_2 \sin x_1 - mgL x_2 \sin x_1$$
$$= \nabla V(x) \cdot \dot{x} = \nabla V(x) \cdot f(x) = 0 .$$

Como todos os critérios foram obedecidos, então o pêndulo simples constitui um sistema estável.

SANTOS, L. H. C. Equações diferenciais impulsivas: uma abordagem sobre estabilidade e métodos numéricos. C.Q.D.- Revista Eletrônica Paulista de Matemática, Bauru, v. 23, n. 1, p. 111–140, jul. 2023.

5.2 Aplicação do Teorema de Lyapunov sobre o Exemplo da Subseção 2.4.1

Para a análise de estabilidade da solução do *Exemplo 2.4.1* deste artigo, será aplicado o *Teorema de Lyapunov*.

$$\begin{pmatrix} \dot{x} = 1 + x^2, \ t \neq \frac{k\pi}{4} \\ \Delta x(t) = -1, \ t = \frac{k\pi}{4}, \ k \in \mathbb{Z}$$

A solução já calculada forneceu, desconsiderando-se os efeitos impulsivos,

$$x(t) = \tan(t)$$

$$\dot{x}(t) = \sec^2(t)$$

e o comportamento gráfico da solução da EDI foi mostrado na Figura 1 deste relatório.

Assim, assumindo-se que x(t) seja a posição de uma partícula de massa m, num tempo t, pode-se, portanto, definir uma função de energia V(x) associada. Assim:

$$V(x) = K(x) + U(x),$$

em que K(x) é a energia cinética da partícula e U(x) é a sua energia potencial. Portanto, tem-se

$$V(x) = \frac{1}{2}mv^2 + mgx,$$

em que g é a norma da aceleração do campo gravitacional local. Prosseguindo-se no desenvolvimento da expressão, tem-se

$$V(x) = \frac{1}{2}m(\dot{x})^2 + mgx$$

Dado que x e \dot{x} são ambas funções do tempo, então, para $0 \le t < \frac{\pi}{4}$, tem-se

$$V(t) = \frac{1}{2}m(\sec^2{(t)})^2 + mg\tan{(t)}$$

= $\frac{1}{2}m\sec^4{(t)} + mg\tan{(t)}.$

Obtendo-se a derivada temporal do potencial, tem-se

$$\dot{V}(t) = 2m \sec^4(t) \tan(t) + mg \sec^2(t), \quad 0 \le t < \frac{\pi}{4}.$$

Analisando-se as condições do Teorema de Lyapunov, tem-se

1. $\nexists t^* \in [0, \frac{\pi}{4})$, tal que $V(t^*) = 0$;

2.
$$\forall t \in [0, \frac{\pi}{4}), V(t) > 0;$$

3. $\forall t \in \left[0, \frac{\pi}{4}\right), \dot{V}(t).\dot{x}(t) > 0.$

Pelos itens 1 e 3, o *Teorema de Lyapunov* garante que a solução x(t) = tan(t), na ausência de impulsos, é instável. O que garante, portanto, a estabilidade da solução da EDI é justamente a

presença do efeito impulsivo

$$\Delta x(t) = -1$$
, para $t = \frac{k\pi}{4}$, com $k \in \mathbb{Z}$.

6 Métodos Numéricos para EDOs - Abordagem Analítica

Este tópico trará uma abordagem analítica de métodos numéricos para a resolução de EDOs, como o *Método de Euler*, os *Métodos de Série de Taylor* e os *Métodos de Runge-Kutta*. Esta parte se baseou nos trabalhos de Ruggiero e Lopes (1996), além do trabalho desenvolvido por Azevedo (2021).

6.1 Método de Euler

Dado o PVI

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0, \end{cases}$$
(7)

o passo simples do método é representado por h e é definido como sendo

$$h = x_{i+1} - x_i, \forall i \in \mathbb{N}.$$

Assim, dado que $y(x_0) = y_0$ é conhecido, bem como o valor da derivada y'(x) na abscissa $x = x_0$, obtém-se a reta $r_0(x)$ tangente ao gráfico de y(x) no ponto (x_0, y_0) . Ou seja,

$$r_0(x) = y'(x_0) \times (x - x_0) + y(x_0)$$

= $f(x_0, y_0) \times (x - x_0) + y_0.$

A partir de tal reta, pode-se obter uma aproximação para o valor y_1 da função avaliada na abscissa do passo seguinte $x_1 = x_0 + h$. Assim,

$$y_1 = y(x_1) \approx r_0(x_1) = y'(x_0) \times (x_1 - x_0) + y(x_0)$$

= $f(x_0, y_0) \times (x_0 + h - x_0) + y_0$

e, portanto,

$$y_1 = y(x_1) \approx h \times f(x_0, y_0) + y_0.$$

O raciocínio é então repetido com o par ordenado (x_1, y_1) para o cálculo de $y_2 = y(x_2)$ e assim sucessivamente. De maneira genérica, o *Método de Euler* fornece

$$y_{k+1} = y_k + h \times f(x_k, y_k), \ \forall k \in \mathbb{N},$$

sendo $h = x_{k+1} - x_k$ o *passo* adotado.

Graficamente, tem-se:

SANTOS, L. H. C. Equações diferenciais impulsivas: uma abordagem sobre estabilidade e métodos numéricos. C.Q.D.- Revista Eletrônica Paulista de Matemática, Bauru, v. 23, n. 1, p. 111–140, jul. 2023.

Figura 10: Representação gráfica do Método de Euler. (Fonte: Elaborado pelo compilador Geogebra)

6.1.1 Exemplo

Dado o PVI a seguir, utilizar o *Método de Euler* para aproximar y(0.04) com erro inferior a 5×10^{-4} .

$$\begin{cases} y' = y \\ y(0) = 1 \end{cases}.$$

Para o Método de Euler, o erro é dado por

$$e(x_n) = \frac{h^2}{2!} \times y(\zeta_{x_n})''.$$

Neste caso, a solução analítica é conhecida e vale $y(x) = e^x$. Portanto, tem-se que

$$M_2 = \max \{ y''(x_n) \mid 0 \le x \le 0.04 \} = \max \{ e^x \mid 0 \le x \le 0.04 \}$$
$$= e^{0.04} = 1.0408.$$

Dado que $e(x_n) \le 5 \times 10^{-4}$, então

$$\frac{1.0408}{2} \times h^2 \le 5 \times 10^{-4} \to h \le 0.0310.$$

Agora, basta escolher o maior valor de *h* a fim de se trabalhar com pontos igualmente espaçados. Portanto, será escolhido h = 0.02, pois deseja-se calcular y(0.04). Assim, tem-se $x_0 = 0$, $x_1 = h = 0.02$ e $x_2 = 2h = 0.04$.

Ademais,

$$y_1 = y_0 + h \times y'(0) \rightarrow y_1 = 1 + 0.02 \times 1 = 1.02$$

 $y_2 = y_1 + h \times y'(1) \rightarrow y_2 = 1.02 + 0.02 \times 1.02 = 1.0404$

Logo, o Método de Euler forneceu

$$y_2 = y(x_2) = y(0.04) = 1.0404.$$

Finalmente, é possível se fazer a verificação do erro ε :

$$\varepsilon = |e^{0.04} - 1.0404| = 4 \times 10^{-4} < 5 \times 10^{-4}.$$

Portanto, o erro cometido pelo método foi inferior ao erro máximo permitido.

6.2 Métodos de Série de Taylor

Considerando-se o PVI de (7), a aproximação da função y(x) em torno da abscissa $x = x_n$ é dada por

$$y(x) = y(x_n) + (x - x_n) \times y'(x_n) + \frac{(x - x_n)^2}{2!} \times y''(x_n) + \frac{(x - x_n)^3}{3!} \times y'''(x_n) + \dots + \frac{(x - x_n)^k}{k!} \times y^{(k)}(x_n) + e(x),$$

em que e(x) é o erro de truncamento, descrito por

$$e(x) = \frac{(x - x_n)^{k+1}}{(k+1)!} \times y^{(k+1)}(\zeta_x), \ \zeta_x \in]x, x_n[.$$

Com isso, faz-se um raciocínio análogo ao *Método de Euler*, visando à obtenção da aproximação numérica de $y_{k+1} = y(x_{k+1})$, partir dos valores de x_k e y_k . Ou seja, y_{k+1} será dado por

$$y_{k+1} = y(x_{k+1}) = y(x_k) + (x_{k+1} - x_k) \times y'(x_k) + \frac{(x_{k+1} - x_k)^2}{2!} \times y''(x_k) + \frac{(x_{k+1} - x_k)^3}{3!} \times y'''(x_k) + \dots + \frac{(x_{k+1} - x_k)^n}{n!} \times y^{(n)}(x_k).$$

 $DOI: 10.21167/cqdv23n1ic2023111140 \\ Disponível em: {\tt https://sistemas.fc.unesp.br/ojs/index.php/revistacqd/revistacqd/index.php/revistacqd/index.php/revistacqd/revistacqd/re$

Assim, o Polinômio de Taylor de ordem n será

$$y_{k+1} = y_k + h \times y_k' + \frac{h^2}{2!} \times y_k'' + \frac{h^3}{3!} \times y_k''' + \dots + \frac{h^n}{n!} \times y_k^{(n)},$$

cujo erro é descrito por

$$|e(x_{n+1})| \le M_{n+1} \times \frac{h^{n+1}}{(n+1)!}$$

Tendo-se em mente o objetivo de se resolver o PVI (7), adotando-se o *Polinômio de Taylor de Ordem 2*, tem-se que

$$y_{k+1} = y_k + h \times y_k' + \frac{h^2}{2!} \times y_k'',$$

sendo que

• vale
$$y_k' = y'(x_k) = f(x_k, y_k)$$
 e

• valem as igualdades

$$y_k'' = y''(x_k) = f'(x_k, y_k) = \frac{d}{dx} f'(x_k, y(x_k))$$
$$= \frac{\partial}{\partial x} f(x_k, y(x_k)) + \frac{\partial}{\partial y} f(x_k, y(x_k)) \times \frac{\partial}{\partial x} y(x_k)$$

e

$$y_k'' = y''(x_k) = f_x(x_k, y_k) + f_y(x_k, y_k) \times f(x_k, y_k)$$
.

6.2.1 Exemplo

Dado o PVI

$$\begin{cases} xy' = x - y \\ y(2) = 2, \end{cases}$$

calcular y(2.1) utilizando a Série de Taylor de Ordem 2.

O Polinômio de Taylor será construído em torno do ponto de abscissa x = 2. Assim,

$$xy' = x - y \leftrightarrow y'(x) = 1 - \frac{y(x)}{x}.$$

Para x = 2, tem-se

$$y'(2) = 1 - \frac{y(2)}{2} = 1 - \frac{2}{2} = 1 - 1 \rightarrow y'(2) = 0.$$

Para a obtenção da derivada de segunda ordem no ponto de abscissa x = 2, basta derivar a EDO do problema em relação a x, ou seja,

$$y' + xy'' = 1 - y' \leftrightarrow xy'' = 1 - 2y' \leftrightarrow y''(x) = \frac{1}{x} - \frac{2y'(x)}{x}.$$

Para x = 2, tem-se $y''(2) = \frac{1}{2}$.

SANTOS, L. H. C. Equações diferenciais impulsivas: uma abordagem sobre estabilidade e métodos numéricos. C.Q.D.- Revista Eletrônica Paulista de Matemática, Bauru, v. 23, n. 1, p. 111–140, jul. 2023.

Finalmente, o Polinômio de Taylor será dado por

$$y(x) = y(2) + (x - 2) \times y'(2) + \frac{(x - 2)^2}{2} \times y''(2)$$
$$= 2 + \frac{1}{4}(x - 2)^2 + \frac{1}{6}(x - 2)^3.$$

Substituindo-se, portanto, x = 2.1, o valor da ordenada será de

$$y(2.1) = 2 + \frac{1}{4} \times (0.1)^2 + \frac{1}{6} \times (0.1)^3$$
$$= 2 + 0.25 \times 0.01 = 2.00238.$$

6.3 Métodos de Runge-Kutta

São uma otimização dos Métodos da Série de Taylor e possuem as seguintes propriedades:

- São de passo unitário;
- Não exigem o cálculo de qualquer derivada de f(s, y), no entanto, é necessário calcular f(x, y) em vários pontos;
- Após se realizar a expansão de f(x, y) por Taylor em torno de (x_n, y_n) e agrupar os termos semelhantes, sua expressão coincide com a do Método da Série de Taylor de mesma ordem.

6.3.1 Método de Runge-Kutta de Primeira Ordem

Coincide com o *Método de Euler*, a menos pelo cálculo da derivada no ponto. Em outras palavras, por *Euler*,

$$y_{n+1} = y_n + h \times y'_n, \ n \in \mathbb{N}.$$

Substituindo-se o cálculo da derivada pelo cálculo da função de duas variáveis $y'_n = f(x_n, y_n)$, o *Método de Runge-Kutta de Primeira Ordem* será dado por

$$y_{n+1} = y_n + h \times f(x_n, y_n), \ n \in \mathbb{N}.$$

6.3.2 Método de Runge-Kutta de Segunda Ordem

Para este método, basta fazer a expansão do Polinômio de Taylor de Segunda Ordem, substituir os cálculos das derivadas e agrupar os termos semelhantes. Assim, tal método fornecerá

$$y_{n+1} = y_n + h \times (1 - w) \times f(x_n, y_n) + h \times w \times f\left(x_n + \frac{h}{2w}, y_n + \frac{h}{2w}f(x_n, y_n)\right),$$

 $\operatorname{com} n \in \mathbb{N} e w \neq 0.$

6.3.3 Método de Runge-Kutta de Terceira Ordem

$$y_{n+1} = y_n + \frac{2}{9} \times k_1 + \frac{1}{3} \times k_2 + \frac{4}{9} \times k_3, \ n \in \mathbb{N},$$

sendo que

$$k_1 = h \times f(x_n, y_n),$$

$$k_2 = h \times f\left(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right),$$

$$k_3 = h \times f\left(x_n + \frac{3h}{4}, y_n + \frac{3k_2}{4}\right)$$

6.3.4 Método de Runge-Kutta de Quarta Ordem

$$y_{n+1} = y_n + \frac{1}{6} \times (k_1 + 2k_2 + 2k_3 + k_4), \ n \in \mathbb{N},$$

em que

. .

$$k_1 = h \times f(x_n, y_n),$$

$$k_2 = h \times f\left(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right),$$

$$k_3 = h \times f\left(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right),$$

$$k_4 = h \times f(x_n + h, y_n + k_3).$$

7 Métodos Numéricos para EDOs - Abordagem Computacional

Nesta seção, serão implementados, em linguagem *Python*, os *Métodos de Runge-Kutta* para a resolução de EDOs. Para isso, a lógica de todos os métodos se resume a iniciar uma lista de valores para x e para y, adicionando-se, inicialmente o ponto de partida (x_0 , y_0). Em seguida, calcula-se os valores de x_1 e y_1 , adicionando-os ao final das respectivas listas.

A partir do valor do passo h adotado, calcula-se o número n de iterações do método. Durante as iterações, os valores de x_i e y_i calculados são adicionados às listas. Terminadas as iterações os últimos valores das listas correspondem à resposta final do problema.

7.1 Runge-Kutta de Primeira Ordem - Implementação


```
x_values.append(x_0)
8
    y_values.append(y_0)
9
10
    # Calcula os proximos valores x_1 e y_1
11
    x_1 = x_0 + h
    y_1 = y_0 + h * f(x_0, y_0)
14
    # Adiciona os valores calculados x_1 e y_1 nas respectivas listas
15
    x_values.append(x_1)
16
    y_values. append (y_1)
17
18
    # Numero de iteracoes para calcular y_f = y(x_f), partindo-se do ponto (x_0,
19
     y_0)
    n = int((x_f - x_0) / h)
20
    for i in range(1, n):
      # Atualiza os valores de x_0 e y_0
      x_0 = x_1
24
      y_0 = y_1
25
26
      # Recalcula os valores de x_1 e y_1
      x_1 = x_0 + h
28
      y_1 = y_0 + h * f(x_0, y_0)
29
30
      # Adiciona os valores calculados x 1 e y 1 nas respectivas listas
31
      x_values.append(x_1)
32
      y_values.append(y_1)
34
35
    return x_values, y_values
```

Código 1: Código do Método de Runge-Kutta de Primeira Ordem

7.2 Runge-Kutta de Segunda Ordem - Implementação

```
def runge_kutta_ordem_2(x_f, x_0, y_0, h, f):
1
2
    # Inicia as listas de sequencias de valores para x e para y
3
    x_values = []
4
    y_values = []
5
6
    # Adiciona os valores iniciais x 0 e y 0 nas respectivas listas
    x_values.append(x_0)
8
    y_values.append(y_0)
9
10
    # Calcula os proximos valores x_1 e y_1
    x_1 = x_0 + h
    y_1 = y_0 + (h/2) * (f(x_0, y_0) + f(x_0 + h, y_0 + h * f(x_0, y_0)))
14
    # Adiciona os valores calculados x_1 e y_1 nas respectivas listas
15
    x_values. append (x_1)
16
    y_values. append (y_1)
17
18
```



```
# Numero de iteracoes para calcular y_f = y(x_f), partindo-se do ponto (x_0,
19
     y_0)
    n = int((x_f - x_0) / h)
20
21
    for i in range(1, n):
23
      # Atualiza os valores de x_0 e y_0
24
      x_0 = x_1
25
      y_0 = y_1
26
      # Recalcula os valores de x_1 e y_1
28
      x = 1 = x + 0 + h
29
      y_1 = y_0 + (h/2) * (f(x_0, y_0) + f(x_0 + h, y_0 + h * f(x_0, y_0)))
30
      # Adiciona os valores calculados x_1 e y_1 nas respectivas listas
32
      x_values.append(x_1)
33
      y_values.append(y_1)
34
35
    return x_values, y_values
36
```


7.3 Runge-Kutta de Terceira Ordem - Implementação

```
def runge_kutta_ordem_3(x_f, x_0, y_0, h, f):
    # Inicia as listas de sequencias de valores para x e para y
3
    x_values = []
4
    y_values = []
5
6
    # Adiciona os valores iniciais x_0 e y_0 nas respectivas listas
7
    x_values.append(x_0)
8
    y_values. append (y_0)
9
10
    # Calculo de k_1, k_2 e k_3
    k_1 = h * f(x_0, y_0)
    k_2 = h * f(x_0 + h / 2, y_0 + k_1 / 2)
    k_3 = h * f(x_0 + 3 * h / 4, y_0 + 3 * k_2 / 4)
14
15
    # Calcula os proximos valores x_1 e y_1
16
    x_1 = x_0 + h
    y_1 = y_0 + 2 / 9 * k_1 + 1 / 3 * k_2 + 4 / 9 * k_3
18
19
    # Adiciona os valores calculados x_1 e y_1 nas respectivas listas
20
    x_values.append(x_1)
    y_values. append (y_1)
    # Numero de iteracoes para calcular y_f = y(x_f), partindo-se do ponto (x_0,
24
     y 0)
    n = int((x_f - x_0) / h)
26
    for i in range(1, n):
27
```

 $DOI: 10.21167/cqdv 23n1ic 2023111140 \\ Disponível em: https://sistemas.fc.unesp.br/ojs/index.php/revistacqd/revistacqd/index.php/revistacqd/index.php/revistacqd/revistacqd/rev$

28 # Atualiza os valores de x_0 e y_0 29 $x_0 = x_1$ 30 $y_0 = y_1$ 31 # Atualiza os valores de k_1, k_2 e k_3 33 $k_1 = h * f(x_0, y_0)$ 34 $k_2 = h * f(x_0 + h / 2, y_0 + k_1 / 2)$ 35 $k_3 = h * f(x_0 + 3 * h / 4, y_0 + 3 * k_2 / 4)$ 36 37 # Recalcula os valores de x_1 e y_1 38 $x_1 = x_0 + h$ 39 $y_1 = y_0 + 2 / 9 * k_1 + 1 / 3 * k_2 + 4 / 9 * k_3$ 40 41 # Adiciona os valores calculados x_1 e y_1 nas respectivas listas 42 43 $x_values.append(x_1)$ $y_values.append(y_1)$ 44 45 return x_values, y_values 46

Código 3: Código do Método de Runge-Kutta de Terceira Ordem

7.4 Exemplo numérico

Dado o PVI a seguir, calcular y(1) pelos Métodos de Runge-Kutta de primeira, segunda e terceira ordens. Adotar como passos h = 1, h = 0.5 e h = 0.1. Em seguida, comparar com a solução exata do problema, dada por

$$y(x) = 1000 \times e^{0.04x}$$
 e $y(1) = 1040.8108$

Então,

$$y' = 0.04 \times y$$

 $y(0) = 1000$.

Ao se aplicar os algoritmos, as tabelas a seguir resumem o desempenho dos três métodos de Runge-Kutta para cada valor do passo *h* adotado.

Ta	abela 1: Métodos de Runge-Kutta com passo $h = 1$			
	Ordem de Runge	y(1) calculado	Erro	
	1	1040.00000	0.81077	
	2	1040.80000	0.01077	
	3	1040.81067	0.00011	

Tabela 2: Métodos de Runge-Kutta com passo	h =	0.5	
--	-----	-----	--

Ordem de Runge	y(1) calculado	Erro
1	1040.40000	0.41077
2	1040.80804	0.00273
3	1040.81076	1.36573e-05

SANTOS, L. H. C. Equações diferenciais impulsivas: uma abordagem sobre estabilidade e métodos numéricos. C.Q.D.- Revista Eletrônica Paulista de Matemática, Bauru, v. 23, n. 1, p. 111–140, jul. 2023.

Tabela 3: Métodos de Runge-Kutta com passo $h = 0.1$				
Ordem de Runge	y(1) calculado	Erro		
1	1040.72773	0.08304		
2	1040.81066	0.00011		
3	1040.81077	1.10665e-07		

A partir de tais tabelas, conclui-se que quanto menor a magnitude do passo *h* adotado e quanto maior for a ordem do *Método de Runge-Kutta*, menor será o erro cometido e, por conseguinte, maior será a precisão da resposta.

Para ilustrar isso, as figuras a seguir representam as iterações de cada método, variando-se os valores do passo *h* adotado.

7.4.1 Passo *h* = 1

Figura 11: *Runge-Kutta* de ordem 1 e passo h = 1

Figura 13: *Runge-Kutta* de ordem 3 e passo h = 1

SANTOS, L. H. C. Equações diferenciais impulsivas: uma abordagem sobre estabilidade e métodos numéricos. C.Q.D.- Revista Eletrônica Paulista de Matemática, Bauru, v. 23, n. 1, p. 111–140, jul. 2023.

 $DOI: 10.21167/cqdv23n1ic2023111140 \\ Disponível em: {\tt https://sistemas.fc.unesp.br/ojs/index.php/revistacqd/revistacqd/index.php/revistacqd/index.php/revistacqd/revistacqd/re$

Figura 14: *Runge-Kutta* de ordem 1 e] passo h = 0.5

Figura 15: *Runge-Kutta* de ordem 2 e passo h = 0.5

Figura 16: *Runge-Kutta* de ordem 3 e passo h = 0.5

7.4.3 Passo *h* = 0.1

Figura 19: *Runge-Kutta* de ordem 3 e passo h = 0.1

SANTOS, L. H. C. Equações diferenciais impulsivas: uma abordagem sobre estabilidade e métodos numéricos. C.Q.D.- Revista Eletrônica Paulista de Matemática, Bauru, v. 23, n. 1, p. 111–140, jul. 2023.

 $DOI: 10.21167/cqdv23n1ic2023111140 \\ Disponível em: {\tt https://sistemas.fc.unesp.br/ojs/index.php/revistacqd/revistacqd/index.php/revistacqd/index.php/revistacqd/revistacqd/re$

Figura 17: *Runge-Kutta* de ordem 1 e passo h = 0.1

Figura 18: *Runge-Kutta* de ordem 2 e passo h = 0.1

8 Método Numérico para a resolução de Equações Diferenciais Impulsivas (EDIs)

Nesta seção, será proposto um método numérico para a resolução de EDIs. Trata-se de uma adaptação dos Métodos de Runge-Kutta. Tal método será apresentado através de um exemplo. Sendo assim, seja dado o seguinte PVI com impulso

$$\begin{cases} y' = 1 + y^2, \ x \neq \frac{k\pi}{4}, \ k \in \mathbb{Z} \\ \Delta y(x) = -1, \ x = \frac{k\pi}{4} \\ y(0) = 0. \end{cases}$$

A resolução deste problema começa pela definição de algumas funções auxiliares, como a função da equação diferencial $f(x, y) = 1 + y^2$, além da função impulsiva $\Delta y(x) = -1$.

```
import numpy as np
import matplotlib.pyplot as plt

# Funcao da EDO
def f(x, y):
return 1 + y ** 2

# Funcao Impulsiva
def delta_y():
return -1
```

Código 4: Funções auxiliares

Ademais, foram definidas outras duas funções auxiliares para verificar se o atual valor da abscissa x está sobre uma superfície impulsiva e outra para fornecer o valor da abscissa referente à próxima superfície impulsiva.

SANTOS, L. H. C. Equações diferenciais impulsivas: uma abordagem sobre estabilidade e métodos numéricos. C.Q.D.- Revista Eletrônica Paulista de Matemática, Bauru, v. 23, n. 1, p. 111–140, jul. 2023.

```
COD
```

```
Retorna 'True' se o atual valor da abscissa estiver sobre uma superficie
 #
1
     impulsiva
2 # Retorna 'False', caso contrario
 def is_on_impulsive_surface(current_x, next_impulsive_x, step):
3
    if np.abs(current_x - next_impulsive_x) < step:
4
      return True
5
    return False
6
8 # Retorna o valor da abscissa referente a proxima superficie impulsiva
 def get_next_impulsive_surface(current_x):
9
    k = 0
10
    while True:
      if current_x > (k * np.pi) / 4:
        k += 1
      else:
14
        return (k * np.pi) / 4
15
```

Código 5: Outras funções auxiliares

O último método auxiliar utilizado foi feito para se ter o *plot* da função exata, solução do problema. Ou seja, foi feito para se obter o gráfico de

$$y(x) = \tan\left(x - \frac{k\pi}{4}\right), \ k \in \mathbb{Z}.$$

```
1 # Solucao exata do problema: y(x) = tan(x - k pi/4)
2 def funcao_exata():
    x_values = list(np.arange(0, 2 * np.pi, 0.001))
3
    y_values = []
4
    k = 0
6
    for x in x_values:
7
      y = np.tan(x - k * np.pi/4)
8
       if y >= 1:
9
         \mathbf{k} = \mathbf{k} + \mathbf{1}
10
         y = 1
11
       y_values.append(y)
    return x_values, y_values
14
```

Código 6:	Solução	exata do	PVI	impulsivo
-----------	---------	----------	-----	-----------

A partir de tais métodos auxiliares, pôde-se adaptar o *Método de Runge-Kutta*, neste caso, de ordem 3, a fim se resolver o PVI com a presença de impulsos em múltiplos inteiros de $\pi/4$.

```
1 def runge_kutta_ordem_3_impulsivo(x_f, x_0, y_0, h, f):

2 # Inicia as listas de sequencias de valores para x e para y

3 x_values = []

4 y_values = []

5 # Adiciona os valores iniciais x_0 e y_0 nas respectivas listas

7 x_values.append(x_0)

8 y_values.append(y_0)
```

SANTOS, L. H. C. Equações diferenciais impulsivas: uma abordagem sobre estabilidade e métodos numéricos. C.Q.D.- Revista Eletrônica Paulista de Matemática, Bauru, v. 23, n. 1, p. 111–140, jul. 2023.


```
9
    # Calculo de k_1, k_2 e k_3
10
    k_1 = h * f(x_0, y_0)
11
    k_2 = h * f(x_0 + h / 2, y_0 + k_1 / 2)
    k_3 = h * f(x_0 + 3 * h / 4, y_0 + 3 * k_2 / 4)
14
    # Calcula os proximos valores x_1 e y_1
    x_1 = x_0 + h
16
    y_1 = y_0 + 2 / 9 * k_1 + 1 / 3 * k_2 + 4 / 9 * k_3
18
    # Adiciona os valores calculados x_1 e y_1 nas respectivas listas
19
    x_values. append (x_1)
20
    y_values. append (y_1)
    # Numero de iteracoes para calcular y_f = y(x_f), partindo-se do ponto (x_0, x_0)
     y_0)
    n = int((x_f - x_0) / h)
24
25
    for i in range(1, n):
26
27
      # Obtem o valor da abscissa onde ocorrera o proximo impulso
28
      next_impulsive_x = get_next_impulsive_surface(x_1)
29
      if is_on_impulsive_surface(x_1, next_impulsive_x, h) == True:
30
        y_1 = y_1 + delta_y()
31
      # Atualiza os valores de x_0 e y_0
      x_0 = x_1
34
      y_0 = y_1
35
36
      # Atualiza os valores de k_1, k_2 e k_3
      k_1 = h * f(x_0, y_0)
38
      k_2 = h * f(x_0 + h / 2, y_0 + k_1 / 2)
39
      k_3 = h * f(x_0 + 3 * h / 4, y_0 + 3 * k_2 / 4)
40
41
      # Recalcula os valores de x_1 e y_1
42
      x_1 = x_0 + h
43
      y_1 = y_0 + 2 / 9 * k_1 + 1 / 3 * k_2 + 4 / 9 * k_3
44
45
      # Adiciona os valores calculados x_1 e y_1 nas respectivas listas
46
      x values.append(x 1)
47
      y_values.append(y_1)
48
49
    return x_values, y_values
50
```

Código 7: Código do Método de Runge-Kutta de Terceira Ordem Impulsivo

Observar que a adaptação do *Método de Runge-Kutta* tradicional se encontra entre as linhas 29 e 32. Nelas, faz-se a checagem se o ponto analisado se encontra numa região impulsiva. Em caso afirmativo, aplica-se o impulso antes da continuação do laço de repetição.

Ao se executar o código, percebe-se que, quanto maior a quantidade de impulsos pelos quais o método passa, maior será o erro entre a solução numérica e a solução analítica exata do problema. Assim, cabe ao programador ajustar a dimensão do passo *h* para que a solução desejada fique dentro

da faixa de erro permitida.

O comportamento da solução numérica fica claro quando se analisa os gráficos. O código a seguir foi utilizado para o *plot* da solução numérica com passo h = 0.1, no intervalo de x = 0 até $x = 2\pi$.

```
# Definicao dos parametros
1
  x f = 6.28
  x_0 = 0.0
 y_0 = 0.0
 h = 0.1
 # Solucao analitica exata
7
 x_exata, y_exata = funcao_exata()
8
  plt.plot(x_exata, y_exata, label='Solucao exata')
9
10
n # Solucao numerica (Runge-Kutta de terceira ordem impulsiva)
12 x_values, y_values = runge_kutta_ordem_3_impulsivo(x_f, x_0, y_0, h, f)
  plt.plot(x_values, y_values, 'go', label='Solucao numerica')
13
14
15 plt.xlabel('$x$')
  plt.ylabel('$y(x)$')
16
17 plt.legend()
18 plt.grid()
19 plt.title (f'Runge-Kutta Impulsiva de Terceira Ordem (h = \{h\}):')
 plt.show()
20
```

Código 8: Código para o plot das soluções exata e numérica

A execução deste último código forneceu o seguinte gráfico:

Figura 20: *Runge-Kutta* impulsivo de ordem 3 e passo h = 0.1

Ao se analisar o gráfico anterior, nota-se que, a partir do segundo efeito impulsivo, em $x = \pi/2$, a solução numérica começa a divergir significativamente da solução exata.

Uma maneira de se contornar esse fenômeno é diminuir o passo h. Assim, para h = 0.01, tem-se:

Figura 21: *Runge-Kutta* impulsivo de ordem 3 e passo h = 0.01

Para h = 0.01, o erro do método numérico começou a ser significativo a partir apenas do sexto impulso. Isso mostra, portanto, uma melhora significativa com relação ao método anterior de passo h = 0.1. Finalmente, para h = 0.001, o erro praticamente se anula no intervalo de x = 0 a $x = 2\pi$, como mostra a figura a seguir.

Figura 22: *Runge-Kutta* impulsivo de ordem 3 e passo h = 0.001

9 Conclusão

Este artigo apresentou alguns exemplos da vasta aplicabilidade das Equações Diferenciais Impulsivas, além de abordar a teoria básica do assunto. Analisou também a estabilidade de sistemas impulsivos, através do *Teorema de Lyapunov*, concluindo-se, assim, que a ausência de impulsos em alguns sistemas pode torná-los instáveis. Logo, uma maneira de estabilizar tais sistemas, originalmente instáveis, é através da aplicação de efeitos impulsivos periódicos.

Já a segunda parte apresentou alguns dos principais métodos de passo constante para a resolução numérica de Equações Diferenciais Ordinárias, com abordagem através de exemplos. Propôs também uma implementação em linguagem *Python* dos *Métodos de Runge-Kutta* e estendeu tais implementações para sistemas impulsivos. Conclui-se, assim, que apesar de a presença de impulsos ser um fator que pode estabilizar sistemas, também pode ser um fator responsável pela divergência das soluções entre os métodos numérico e analítico. Uma maneira de se mitigar tal diferença é através do ajuste do tamanho do passo, visto que, quanto menor o passo, menor será o erro cometido pela solução numérica.

SANTOS, L. H. C. Equações diferenciais impulsivas: uma abordagem sobre estabilidade e métodos numéricos. C.Q.D.- Revista Eletrônica Paulista de Matemática, Bauru, v. 23, n. 1, p. 111–140, jul. 2023.

 $DOI: 10.21167/cqdv23n1ic2023111140 \\ Disponível em: {\tt https://sistemas.fc.unesp.br/ojs/index.php/revistacqd/revistacqd/index.php/revistacqd/index.php/revistacqd/revistacqd/revistacqd/revistacqd/revistacqd/revistacqd/revistacqd/revistacqd/revistacqd/revistacq$

10 Apêndice

A seguir, encontram-se alguns *links* para os *Notebooks Python* (.ipynb) utilizados para a confecção deste artigo.

- Exemplos iniciais de sistemas impulsivos: <https://colab.research.google.com/drive/15dVDbE09SzTWoQ1uII zgAqMt3IN?usp=sharing>
- Métodos de Runge-Kutta para a resolução de EDOs: <https://colab.research.google.com/drive/ 1YQ3UQDETINpXME76OiCHA79FDtu9vJWC?usp=sharing>
- Método de Runge-Kutta Impulsivo para a resolução de EDIs: <https://colab.research.google. com/drive/1e-YuNvT6lViUP1kkvx4AJ5AK6ueDBk9J?usp=sharing>

Referências

STAMOVA, Ivanka; STAMOV, Gani. Applied impulsive mathematical models. Cham: Springer, 2016.

BONOTTO, Everaldo de Mello. **Sistemas semidinâmicos impulsivos**. 2005. 95 p. Dissertação (Mestrado em Matemática) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2005.

PATES, Richard. **The Lyapunov stability theorem**. [*S. l.: s. n.*], 2021. 1 vídeo (9 min). Disponível em: ">https://www.youtube.com/watch?v=td-d4Yi-81c>. Acesso em: 2 jan. 2022.

PATES, Richard. **An example using the Lyapunov stability theorem**. [*S. l.: s. n.*], 2021. 1 vídeo (10 min). Disponível em: https://www.youtube.com/watch?v=WNc7jWAKFTg. Acesso em 2 jan. 2022.

RUGGIERO, Márcia A. Gomes; LOPES, Vera Lúcia da Rocha. **Cálculo numérico**: aspectos teóricos e computacionais. 2. ed. São Paulo: Pearson, 1996.

AZEVEDO, Anibal. **Projeto cálculo numérico para todos**. [*S. l.: s. n.*], 2021. playlist 142 vídeos. Disponível em: https://www.youtube.com/playlist?list=PLH9knZH6lcgrCjPt7ouHphjuYvuzBfa3U. Acesso em: 29 jul. 2022.

 $DOI: 10.21167/cqdv 23n1ic 2023111140 \\ Disponível em: {\tt https://sistemas.fc.unesp.br/ojs/index.php/revistacqd/revistacqd/revistacqd/$