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Abstract
The classic Poincaré Normal Form Theorem states that a critical
point of an analytic planar vector field is a non-degenerate
center if and only if there is an analytic coordinate change such
that in the new coordinates the vector field initial is of the form
𝑓 (𝑥2 + 𝑦2)

(
𝑦 𝜕
𝜕𝑥

− 𝑥 𝜕
𝜕𝑦

)
, where 𝑓 is an analytic function defined

in a neighborhood of the origin such that 𝑓 (0) > 0. In this
article it is proved that an analytical planar vector field with
a non-degenerate center at (0, 0) is analytically conjugate, in
a neighborhood of (0, 0), to a Hamiltonian vector field of the
form 𝑦 𝜕

𝜕𝑥
− 𝑉 ′(𝑥) 𝜕

𝜕𝑦
, where 𝑉 is an analytic function defined

in a neighborhood of the origin such that 𝑉 (0) = 𝑉 ′(0) = 0
and 𝑉 ′′(0) > 0. This result is a partial answer to a question
proposed by Chicone in 1987.
Keywords: Analytic planar vector fields. Non-degenerate cen-
ter. Analytic conjugation. Potential systems.

Resumo
O clássico Teorema da Forma Normal de Poincaré afirma que
um ponto crı́tico de um campo vetorial planar analı́tico é um
centro não degenerado se e somente se houver uma mudança
de coordenada analı́tica tal que nas novas coordenadas o campo
vetorial inicial seja da forma 𝑓 (𝑥2 + 𝑦2)

(
𝑦 𝜕
𝜕𝑥

− 𝑥 𝜕
𝜕𝑦

)
, onde 𝑓 é

uma função analı́tica definida em uma vizinhança da origem tal
que 𝑓 (0) > 0. Neste artigo é provado que um campo vetorial
planar analı́tico com um centro não degenerado em (0, 0) é
analiticamente conjugado, em uma vizinhança de (0, 0), a um
campo vetorial hamiltoniano da forma 𝑦 𝜕

𝜕𝑥
− 𝑉 ′(𝑥) 𝜕

𝜕𝑦
, onde 𝑉

é uma função analı́tica definida em uma vizinhança da origem
tal que 𝑉 (0) = 𝑉 ′(0) = 0 e 𝑉 ′′(0) > 0. Este resultado é uma
resposta parcial a um problema proposto por Chicone em 1987.
Palavras-chave: Campos vetoriais planares analı́ticos. Centro
não degenerado. Conjugação analı́tica. Sistemas potenciais.
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1 Introduction
Let Ω be an open subset of R2 and 𝐶𝜔 (Ω,R𝑑) the set of real analytic functions defined on Ω with

values in R𝑑 , 𝑑 ∈ {1, 2}. Let 𝑃,𝑄 ∈ 𝐶𝜔 (Ω,R) and consider the analytic differential system

¤𝑥 = 𝑃(𝑥, 𝑦), ¤𝑦 = 𝑄(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω. (1)

The system (1) defines in Ω the planar vector field 𝑋 = (𝑃,𝑄) ∈ 𝐶𝜔 (Ω,R2). In this article, the
vector field 𝑋 = (𝑃,𝑄) will often be represented by the differential operator

𝑋 = 𝑃
𝜕

𝜕𝑥
+𝑄

𝜕

𝜕𝑦
. (2)

A point 𝑝 ∈ Ω such that 𝑋 (𝑝) = (0, 0) is called a singular point of 𝑋 . A singular point 𝑝 is
non-degenerate if the determinant of the Jacobian matrix 𝐷𝑋 (𝑝) of 𝑋 at 𝑝 is nonzero, that is, if
𝑃𝑥 (𝑝)𝑄𝑦 (𝑝) − 𝑃𝑦 (𝑝)𝑄𝑥 (𝑝) ≠ 0. A singular point 𝑝 is called a center of 𝑋 if there exists an open
neighborhood 𝑈 of 𝑝 such that every solution of (1) with an initial condition in 𝑈 − {𝑝} defines a
periodic orbit around 𝑝. The largest neighborhood A with this property is called the period annulus
of 𝑝. Let 𝑝 be a center of 𝑋 , and let 𝑇 (𝑞) be the period of the orbit passing through 𝑞 ∈ A. The
function 𝑞 → 𝑇 (𝑞) is called the period function associated with the center 𝑝.

Let Ω1 and Ω2 be open subsets of R2. The vector fields 𝑋 ∈ 𝐶𝜔 (Ω1,R2) and 𝑌 ∈ 𝐶𝜔 (Ω2,R2)
are analytically equivalent (or analytically conjugate) if there exists an analytic diffeomorphism
ℎ : Ω1 → Ω2 such that

𝐷𝑞ℎ𝑋 (𝑞) = 𝑌 (ℎ(𝑞)) for every 𝑞 ∈ Ω1. (3)

The diffeomorphism ℎ maps singular points to singular points and periodic orbits to periodic orbits,
preserving the period of the periodic orbits. Let 𝑝 be a singular point of 𝑋 . We say that 𝑋 is locally
analytically conjugate to a vector field 𝑌 if equality (3) holds in a neighborhood of 𝑝.

2 Main Result
The main result of this paper is the following theorem.

Theorem 2.1 Let Ω be an open subset of R2 such that (0, 0) ∈ Ω, and suppose that the vector field
𝑋 ∈ 𝐶𝜔 (Ω,R2) has a non-degenerate center at (0, 0). Then 𝑋 is analytically conjugate, near (0, 0),
to the vector field

𝑌 = 𝑦
𝜕

𝜕𝑥
−𝑉 ′(𝑥) 𝜕

𝜕𝑦
, (4)

where 𝑉 is an analytic function defined near the origin such that 𝑉 (0) = 𝑉 ′(0) = 0 and 𝑉 ′′(0) > 0.

Theorem 2.1 provides a partial answer to a problem proposed by Chicone in 1987 (see [1]).

The vector field (4) defines the Hamiltonian system

¤𝑥 = 𝑦, ¤𝑦 = −𝑉 ′(𝑥). (5)

This system is called a potential system and has been the subject of study by many researchers.
Among the issues addressed, two stand out, both related to the period function associated with the
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center of system (5). The first issue concerns the study of the monotonicity of the period function.
This question has been addressed in several papers, especially [1], [2], [3], [4], [5]. The second
issue pertains to the possibility of constructing a potential function 𝑉 from a positive function 𝑇 .
This question is known as the inverse problem and has been addressed in several papers, especially
[6], [7], [8], [9], [10], [11], [12]. In [1] Chicone asks under what conditions a vector field 𝑋 with
a center at (0, 0) is conjugate to a Hamiltonian vector field of type (4). Theorem (2.1) provides an
answer to Chicone’s question for the particular case where 𝑋 is analytic and the center at (0, 0) is
non-degenerate.

3 Proof of Theorem 2.1
The central idea of the proof is to construct a vector field of the type (4), starting from the period

function of the vector field 𝑋 . This construction ensures that the period function of 𝑌 is equal to the
period function of 𝑋 . The proof is divided into several lemmas.

Lemma 3.1 Let 𝑋 = 𝑃 𝜕
𝜕𝑢

+ 𝑄 𝜕
𝜕𝑣

be an analytic vector field with a non-degenerate center at (0, 0).
Then 𝑋 is analytically conjugate, near (0, 0), to the vector field

𝑋 (𝜉, 𝜂) = 𝑓 (𝜉2 + 𝜂2)
(
𝜂
𝜕

𝜕𝜉
− 𝜉

𝜕

𝜕𝜂

)
, (6)

where 𝑓 is an analytic function defined near the origin such that 𝑓 (0) > 0.

Proof: This is an immediate consequence of the Poincaré Normal Form Theorem (see [13]).
Note that (6) is a Hamiltonian vector field with the Hamiltonian function 𝐻 (𝜉, 𝜂) = 𝐹 (𝜉2 + 𝜂2),

where 𝐹 is the analytic function defined by

𝐹 (𝑧) = 1
2

∫ 𝑧

0
𝑓 (𝑠)𝑑𝑠. (7)

Therefore, the periodic orbits of (6) are contained in the level curves 𝐻 (𝜉, 𝜂) = 𝐸.

Lemma 3.2 Let 𝐸 ≥ 0, the period function 𝑇 (𝐸) of (6) parametrized by 𝐻 (𝜉, 𝜂) = 𝐸 is the analytic
function given by

𝑇 (𝐸) = 𝜋

𝐹′(𝐹−1(𝐸))
= 𝜋

𝑑

𝑑𝐸
𝐹−1(𝐸). (8)

Proof: In polar coordinates, (6) becomes

𝑋 (𝑟, 𝜃) = 𝑓 (𝑟2) 𝜕

𝜕𝜃
, (9)

where 𝑟2 = 𝜉2 + 𝜂2 and 𝜃 = arctan
( 𝜂
𝜉

)
. Thus, the origin is a center with the periodic orbits inside

the circles 𝜉2 + 𝜂2 = 𝑟2. Therefore, the period of the periodic orbit of (6) inside the circle of radius
𝑟 is given by

𝑇 (𝑟) = 2𝜋
𝑓 (𝑟2)

. (10)
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Let 𝐸 > 0 such that 𝐻 (𝜉, 𝜂) = 𝐹 (𝜉2 +𝜂2) = 𝐸 . Since 𝐹′(0) = 𝑓 (0) > 0, 𝐹 has an analytic inverse in
a neighborhood of zero. Therefore, 𝑟2 = 𝜉2 + 𝜂2 = 𝐹−1(𝐸) in a neighborhood of zero. Substituting
𝑟 =

√︁
𝐹−1(𝐸) into (10), we obtain

𝑇 (𝐸) = 𝑇 (
√︁
𝐹−1(𝐸)) = 2𝜋

𝑓 (𝐹−1(𝐸))
(7)
=

𝜋

𝐹′(𝐹−1(𝐸))
. (11)

Note that, by definition, 𝑇 (𝐸) is analytic in a neighborhood of zero with 𝑇 (0) = 𝜋/𝐹′(0) > 0.

Lemma 3.3 Let𝑇 (𝐸) be the analytic function defined in (11). Then there exists an analytic function
𝑉 , defined in a neighborhood of zero, such that 𝑉 (0) = 𝑉 ′(0) = 0 and 𝑉 ′′(0) > 0. Moreover, the
period function of the Hamiltonian vector field, defined in a neighborhood of (0, 0), by

𝑌 (𝑥, 𝑦) = 𝑦
𝜕

𝜕𝑥
−𝑉 ′(𝑥) 𝜕

𝜕𝑦
, (12)

equals 𝑇 (𝐸).

Proof: Since 𝐹−1(𝐸) is analytic in a neighborhood of zero, with 𝐹−1(0) = 0, there exists a sequence
of real numbers (𝑎𝑛)𝑛≥1 such that

𝐹−1(𝐸) =
∑︁
𝑛≥1

𝑎𝑛𝐸
𝑛. (13)

Therefore, (
𝐹−1)′(𝐸) = ∑︁

𝑛≥1
𝑛𝑎𝑛𝐸

𝑛−1. (14)

Since
(
𝐹−1)′(0) = 1/𝐹′(0), we have that 𝑎1 = 1/𝐹′(0) > 0. Let (𝑏𝑛)𝑛≥1) be the sequence of real

numbers defined by

𝑏𝑛 =
𝑛
√

2𝜋Γ(𝑛)
4Γ(𝑛 + 1/2) 𝑎𝑛, (15)

where Γ is Euler’s gamma function. Since lim
𝑛→∞

Γ(𝑛)
Γ(𝑛+1/2) = 0, there exists a constant 𝑀 > 0 such that

|𝑏𝑛 | ≤ 𝑛𝑀 |𝑎𝑛 |. Therefore, the function 𝜑(𝐸) defined by

𝜑(𝑧) =
∑︁
𝑛≥1

𝑏𝑛𝑧
2𝑛−1 (16)

is analytic in a neighborhood of zero, with 𝜑(0) = 0 and 𝜑′(0) = 𝑏1 =
√

2𝑎1/2 > 0. Let 𝜁 (𝐸) be
defined in a neighborhood of zero by

𝜁 (𝐸) = 𝜑(
√
𝐸) =

∑︁
𝑛≥1

𝑏𝑛𝐸
(2𝑛−1)/2. (17)

Since
𝜁 ′(𝐸) = 𝜑′(𝐸)

2
√
𝐸

,
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it follows that lim
𝐸→0+

𝜁 ′(𝐸) = +∞. Consequently, 𝜁 (𝐸) is invertible in a neighborhood of zero. Let 𝑉

be the function defined in a neighborhood of zero by 𝑉 (𝑥) = 𝜁−1(𝑥). By construction, 𝑉 is analytic
in a neighborhood of zero with 𝑉 (0) = 𝑉 ′(0) = 0 and 𝑉 ′′(0) > 0.

Indeed, since 𝜑′(0) > 0, the function 𝜑(𝑧) is invertible in a neighborhood of zero. Therefore,
𝑥 = 𝜁 (𝐸) = 𝜑(

√
𝐸) implies that 𝜁−1(𝑥) = [𝜑−1(𝑥)]2. It follows that 𝑉 (𝑥) = 𝜁−1(𝑥) = [𝜑−1(𝑥)]2 is

analytic in a neighborhood of zero. Moreover, from the definition of 𝑉 , we have 𝑉 (0) = 𝑉 ′(0) = 0
and

𝑉 ′′(0) = 2(𝜑−1)′(0) = 2
𝜑′(0) =

2
𝑏1

> 0.

Note that, by definition, 𝑉 is an even function. Let 𝑌 be the Hamiltonian vector field defined by

𝑌 (𝑥, 𝑦) = 𝑦
𝜕

𝜕𝑥
−𝑉 ′(𝑥) 𝜕

𝜕𝑦
. (18)

By construction, 𝑌 is analytic in a neighborhood of (0, 0) and has a non-degenerate center at (0, 0).
Therefore, the periodic orbits of (18) are contained in the level curves 𝐻 (𝑥, 𝑦) = 𝐸 , where 𝐻 is the
Hamiltonian function defined in a neighborhood of (0, 0) by

𝐻 (𝑥, 𝑦) = 𝑦2

2
+𝑉 (𝑥). (19)

Let 𝑇 (𝐸) be the period of the periodic orbit with 𝐻 (𝑥, 𝑦) = 𝐸 of the vector field (18). By (19)
we have that

𝑦 = ±
√︁

2(𝐸 −𝑉 (𝑥)). (20)

Then

𝑇 = 2
∫ 𝑉−1

+ (𝐸)

𝑉−1
− (𝐸)

𝑑𝑥

𝑦
= 2

∫ 𝑉−1
+ (𝐸)

𝑉−1
− (𝐸)

𝑑𝑥√︁
2(𝐸 −𝑉 (𝑥))

=
√

2
∫ 𝑉−1

+ (𝐸)

0

𝑑𝑥√︁
𝐸 −𝑉 (𝑥)

−
√

2
∫ 𝑉−1

− (𝐸)

0

𝑑𝑥√︁
𝐸 −𝑉 (𝑥)

,

where 𝑉−1
− and 𝑉−1

+ denote the inverse of 𝑉 in 𝑥 < 0 and 𝑥 > 0 respectively. The change of
coordinates 𝑥 = 𝑉−1

+ (𝐸) and 𝑥 = 𝑉−1
− (𝐸) in the first and second integral above respectively yield

𝑇 (𝐸) =
√

2
∫ 𝐸

0

(
𝑉−1
+ (𝑠) −𝑉−1

− (𝑠)
)′
𝑑𝑠

√
𝐸 − 𝑠

. (21)

Since𝑉 is even, we have that𝑉−1
− (𝐸) = −𝑉−1

+ (𝐸) and, consequently,𝑉−1
+ (𝐸)−𝑉−1

− (𝐸) = 2𝑉−1
+ (𝐸) =

2𝑉−1(𝐸). Therefore, the period function 𝑇 (𝐸) of (18) parametrized by the energy levels 𝐻 = 𝐸 is
the analytic function defined by

𝑇 (𝐸) = 2
√

2
∫ 𝐸

0

(𝑉−1)′(𝑠)𝑑𝑠
√
𝐸 − 𝑠

. (22)

By definition,
𝑉−1(𝐸) = 𝜑(

√
𝐸) (17)

=
∑︁
𝑛≥1

𝑏𝑛𝐸
(2𝑛−1)/2
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Matemática, Bauru, v. 24, e24015, 2024.
DOI: 10.21167/cqdv24e24015 Disponı́vel em: https://sistemas.fc.unesp.br/ojs/index.php/revistacqd/index

5



and, therefore,
(𝑉−1)′(𝐸) =

∑︁
𝑛≥2

(2𝑛 − 1)
2

𝑏𝑛𝐸
(2𝑛−3)/2.

Substituting the series of (𝑉−1)′(𝐸) into (22), we obtain

𝑇 (𝐸) = 2
√

2
∑︁
𝑛≥2

(2𝑛 − 1)
2

𝑏𝑛

∫ 𝐸

0

𝑠(2𝑛−3)/2𝑑𝑠√︁
(𝐸 − 𝑠)

= 2
√

2
∑︁
𝑛≥2

(2𝑛 − 1)
2

𝑏𝑛

∫ 1

0

(𝐸𝑡) (2𝑛−3)/2𝐸𝑑𝑡√︁
(𝐸 − 𝐸𝑡)

= 2
√

2
∑︁
𝑛≥2

(2𝑛 − 1)
2

𝑏𝑛𝐸
𝑛−1

∫ 1

0

𝑡 (2𝑛−3)/2𝑑𝑡√︁
(1 − 𝑡)

= 2
√

2
∑︁
𝑛≥1

(2𝑛 − 1)
2

𝑏𝑛𝐸
𝑛−12

√
𝜋Γ(𝑛 − 1/2)

Γ(𝑛)

= 2
√

2
∑︁
𝑛≥1

𝑏𝑛

√
𝜋Γ(𝑛 + 1/2)

Γ(𝑛) 𝐸𝑛−1.

By definition, 𝑏𝑛 = 𝑛
√

2𝜋Γ(𝑛)
4Γ(𝑛+1/2)𝑎𝑛. Then

𝑏𝑛

√
𝜋Γ(𝑛 + 1/2)

Γ(𝑛) 𝐸𝑛−1 =
𝑛
√

2𝜋Γ(𝑛)
4Γ(𝑛 + 1/2) 𝑎𝑛 ·

√
𝜋Γ(𝑛 + 1/2)

Γ(𝑛) =

√
2𝜋𝑛𝑎𝑛

4
.

Therefore

𝑇 (𝐸) = 2
√

2
∑︁
𝑛≥1

√
2𝜋𝑛𝑎𝑛

4
𝐸𝑛−1 = 𝜋

∑︁
𝑛≥1

𝑛𝑎𝑛𝐸
𝑛−1 (14)

= 𝜋(𝐹−1)′(𝐸) = 𝜋

𝐹′(𝐹−1(𝐸))
(8)
= 𝑇 (𝐸).

3.1 Conclusion of the proof of Theorem 2.1
By construction, the vector field (18) has a non-degenerate center at (0, 0). Then, by Lemma

3.1, (18) is analytically conjugate, in a neighborhood of (0, 0), to the vector field

𝑌 (𝜉, 𝜂) = 𝑔(𝜉2 + 𝜂2)
(
𝜂
𝜕

𝜕𝜉
− 𝜉

𝜕

𝜕𝜂

)
, (23)

where 𝑔 is an analytic function defined in a neighborhood of the origin such that 𝑔(0) > 0.
By Lemma 3.2, the period function 𝑇 (𝐸) of (23), parametrized by 𝐻 (𝜉, 𝜂) = 𝐸 , is the analytic

function given by
𝑇 (𝐸) = 𝜋

𝐺′(𝐺−1(𝐸))
= 𝜋

𝑑

𝑑𝐸
𝐺−1(𝐸), (24)

where 𝐺 is the analytic function defined by

𝐺 (𝑧) = 1
2

∫ 𝑧

0
𝑔(𝑠) 𝑑𝑠. (25)

By construction, 𝑇 (𝐸) = 𝑇 (𝐸) = 𝜋 𝑑
𝑑𝐸

𝐹−1(𝐸). Therefore, 𝜋 𝑑
𝑑𝐸
𝐺−1(𝐸) = 𝜋 𝑑

𝑑𝐸
𝐹−1(𝐸). Since

𝐺−1(0) = 𝐹−1(0) = 0, it follows that

𝐺−1(𝐸) =
∫ 𝐸

0

𝑑

𝑑𝐸
𝐺−1(𝑠) 𝑑𝑠 =

∫ 𝐸

0

𝑑

𝑑𝐸
𝐹−1(𝑠) 𝑑𝑠 = 𝐹−1(𝐸).
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Thus, 𝐺 coincides with 𝐹 in a neighborhood of zero. This implies that the vector fields (6) and (23)
coincide in a neighborhood of (0, 0).

Let ℎ1 and ℎ2 be the analytic diffeomorphisms that conjugate the fields 𝑋 and 𝑌 (defined in (18))
with (6), respectively. Then the analytic diffeomorphism ℎ, defined in a neighborhood of (0, 0) by ℎ =

ℎ−1
2 ◦ ℎ1, conjugates the fields 𝑋 and𝑌 . Therefore, the vector field 𝑋 in the definition of Theorem 2.1

is analytically conjugate, in a neighborhood of (0, 0), to the Hamiltonian vector field defined in (18).
With this, we conclude the proof of Theorem 2.1. ■

A linear map 𝑅 : R2 → R2 is called a linear involution on R2 if 𝑅 ≠ id and 𝑅2 = id. A
vector field 𝑋 : Ω ⊆ R2 → R2 is reversible with respect to 𝑅 or 𝑅-reversible in Ω if 𝑅 ◦ 𝑋 (𝑞) =
−𝑋 ◦ 𝑅(𝑞) for all 𝑞 ∈ Ω.

Corollary 3.4 Let 𝑋 = 𝑃 𝜕
𝜕𝑢

+ 𝑄 𝜕
𝜕𝑣

be an analytic vector field in a neighborhood of (0, 0) with
𝑋 (0, 0) = (0, 0) and 𝑃𝑥 (0, 0)𝑄𝑦 (0, 0) − 𝑃𝑦 (0, 0)𝑄𝑥 (0, 0) > 0. Suppose that 𝑋 is 𝑅-reversible, with
𝑅(𝑢, 𝑣) = (𝑢,−𝑣). Then 𝑋 is analytically conjugate, in a neighborhood of (0, 0), to the vector field
𝑌 = 𝑦 𝜕

𝜕𝑥
− 𝑉 ′(𝑥) 𝜕

𝜕𝑦
, where 𝑉 is an analytic function defined in a neighborhood of the origin such

that 𝑉 (0) = 𝑉 ′(0) = 0 and 𝑉 ′′(0) > 0.

Proof: Under these assumptions, 𝑋 has a non-degenerate center at (0, 0) (see [14], Theorem 1).
The conclusion follows from Theorem 2.1.

4 Conclusion
As already mentioned, this work provides a partial answer to a question posed by Chicone in

1987. The result opens avenues for further research in more general cases. The global equivalence
between vector fields of the form

𝑋 (𝑢, 𝑣) = 𝑣𝜕𝑢 + 𝑓 (𝑢, 𝑣2/2)𝜕𝑣

and those of the form
𝑌 (𝑥, 𝑦) = 𝑦

𝜕

𝜕𝑥
−𝑉 ′(𝑥) 𝜕

𝜕𝑦

has been studied in [15] and [16]. The global version of Theorem 2.1 is proved in Theorem 1.2 of
reference [17].
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Matemática, Bauru, v. 24, e24015, 2024.
DOI: 10.21167/cqdv24e24015 Disponı́vel em: https://sistemas.fc.unesp.br/ojs/index.php/revistacqd/index

8



* English translation of the article **, originally published in C.Q.D. - Revista Eletrônica Pau-
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