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Numerical solution of parabolic differential
equations using finite differences: a comparative

study
Solução numérica de equações diferenciais parabólicas

usando diferenças finitas: um estudo comparativo

Resumo
Neste trabalho, aplicou-se o método das diferenças finitas para
equações diferenciais parabólicas com o objetivo de comparar
resultados numéricos de problemas que envolvem difusão tér-
mica. A solução numérica é obtida através da utilização dos
métodos numéricos explícito, implícito e implícito de Crank-
Nicolson. São descritos os critérios de estabilidade e da con-
sistência de cada método analisado. Os resultados numéricos
mostraram que as formulações implícitas superam as condições
de estabilidade do método explícito, possibilitando a utilização
de passos maiores na malha. As aproximações, no entanto,
são mais satisfatórias quando esses passos tendem para zero.
Levando em consideração os critérios de convergência, as for-
mulações apresentadas nesse trabalho apresentam soluções nu-
méricas confiáveis dos problemas. Os métodos implícito e de
Crank-Nicolson são, consideravelmente, melhores em relação
ao método explícito.
Palavras-chave: Equações Diferenciais Parabólicas. Soluções
numéricas. Diferenças Finitas.

Abstract
In this work, the finite difference method was applied to pa-
rabolic differential equations in order to compare numerical
results of problems involving thermal diffusion. The numerical
solution is obtained by using the explicit, implicit and implicit
numerical methods of Crank-Nicolson. The stability and con-
sistency criteria of each method are described. The numerical
results showed that the implicit formulations outweigh the sta-
bility conditions of the explicit method, making it possible to
use larger steps in the mesh. The approximations, however, are
more satisfactory when those steps tend to zero. Taking into
account the convergence criteria, the formulations presented in
this paper present reliable numerical solutions of the problems.
The implicit and Crank-Nicolsonmethods are considerably bet-
ter in relation to the explicit method.
Keywords: Differential Parabolic Equations. Numerical solu-
tions. Finite Differences.
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1 Introduction
The modeling of many problems related to several areas of knowledge, such as Physics, Biology,

Economics, Engineering and Geometry has resulted in complex equations. From the effort of great
mathematicians, many important contributions to the solution of these problems have arisen. Many
researchers are currently working on finding solution methods. However, with the great evolution
of computing, enormously increasing the capacity of data processing, the computer has become a
very powerful tool for the solution of these equations and the problems mentioned.

In the past, studies of physical phenomena and nature were based on two scientific methods:
theoretical and practical. The theoretical method develops principles, laws, equations, and physical
theories of problems. The practical method deals with observations and experiments. Nowadays,
scientific studies have benefited enormously from the technological advances and connected the
practical and theoretical methods, thus being able to work with a new method: the numerical one.

The use of numerical techniques for simulation has been possible thanks to the development of
algorithms for solving complex problems by making large number of calculations in short times. In
this way, the main advantages of using a numerical method are: fast results, low cost, less effort
with large number of hand-made calculations, solve complex processes and complex geometries, etc.
However, the numerical methods present some disadvantages that influence on the study as errors
of approximations, instability, memory cost of the computer. In this work, attention is focused on
the study of formulations for solving problems that result in parabolic partial differential equations
(PDE). These equations represent non-stationary problems and, in addition, they have the great
advantage of not propagating discontinuities, that is, the solution of a parabolic equation is always
smooth within its solution domain, even when the initial condition is not. Parabolic equations model
phenomena that evolve over time. Thus, one of the variables always has a temporal character that
distinguishes it from the others.

In the study, we will work with problems that model the heat flow in the bar. The mathematical
descriptions of the processes of heat flow in bar, known as diffusion equations, began to be proposed
in the nineteenth century by Joseph Fourier, who published in 1822 the mathematical classic Théorie
Analytique de la Chaleur (The Analytical Theory of Heat) [1].

The diffusion equation is a partial parabolic differential equation which, in one-dimensional
case, has constant coefficients. The exact solution to this problem can be found by the method of
separating variables without too many complications. Although in the literature there are different
methods used to determine the exact solutions of partial differential equations, most of the time we
know only of their existence without it being possible to determine them. In this case, numerical
methods can be used to determine approximate solutions to problems.

At present, there are different numerical techniques and formulas to determine the solution of
one (PDE). Here, in this work, we will deal with processes that involve finite differences. This
technique allows the present derivatives of the EDP to be replaced by numerical values of a function,
in discretized domain. In this technique, explicit and implicit formulations may be made.

At the present time, a difficulty of finite difference techniques is its explicit formulation, since
it requires a large number of computational cycles and can consume a large amount of memory,
occupying a large space for storage and high processing time. These problems occur when the mesh
is refined and the combined values of the steps require that the time step be small enough, increasing
the number of calculations required by the method. When the time step is not small enough, the
method becomes unstable. That is, the numerical solution accumulates errors of the previous cycles
and loses its physical meaning. An alternative to this problem is to use implicit formulations.

The use of implicit methods for PDE was initiated when Crank and Nicolson, in 1947, used an
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unconditionally stable method for the diffusion equation. Since then, several researchers have been
proposing modifications in the formulation and applying in several EPDs that model the most varied
problems. In addition to its favorable stability, the implicit method allows to advance in the temporal
step using larger steps, whithout instabilities. Clearly, this does not mean that it will lead to better
approximations.

Given the importance and employability of the cited numerical methods, the main objectives of
this work are to analyze and compare the numerical results obtained by the explicit, implicit and
Crank-Nicolson formulations, applied to the diffusion equation.

2 Theoretical Grounding

2.1 Partial differential equations (PDEs)
Partial differential equations are those involving partial derivatives of a function. They are

classified into three categories: Parabolic (evolution problems), Elliptic (equilibrium problems) and
Hyperbolic (problems involving propagation or discontinuity). The problem addressed in this work
is evolutionary, known as the diffusion or heat equation, which is a parabolic PDE, given by:

qC = U
2qGG , (1)

under the Dirichlet contour conditions, which specifies the value of the function in the contour.
The value U2 represents the thermal diffusivity of the material. For more details on the heat

equation see ref. [2].

2.2 Analytical solution
In order to find the necessary solutions, it is assumed that q(G, C) is a product of two other functions

- and) which depend respectively on G and C. Thus, there will be two ordinary differential equations
that can be solved without any complication, by analyzing the intervals of interest.

In this way, the method of separating variables is applied, the exact solving of the problem (1) is
given by

q= (G, C) = -= (G) · )= (C) = 2 · 4
−U2=2 c2

;
C · B4=

(
=cG
;

)
,

for some real constant 2. Using series of Fourier see [2] [p.126-129], it is possible to show that the
solution q of problem (1) is given by

q(G, C) =
∞∑
8=1

2= · B4=
(=cG
;

)
· 4 −U

2=2 c2
;

C , (2)

with

k(G) = q(G, 0) =
∞∑
8=1
2= · B4=

(
=cG
;

)
,

and

2= =
2
;

;∫
0
k(G) · B4=

(
=cG
;

)
3G, = = 1, 2, ...

The method of separating variables for the diffusion equation is presented in detail in ref. [2]
and [3].
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2.3 Discretization
To solve a differential equation computationally, it is fundamental to express the domain (region)

where the problem will be solved properly. Usually, it is not possible to obtain numerical solutions
in continuous regions, due to their infinity of points. First, the domain is discretized. The concept
of discretizing springs from the transformation of the continuous problem into a discrete and finite.

Figura 1: Domain Discretization

In the points of this discretized domain solutions are obtained for the problem. It is intuitively
noticed that the higher the number of points, the greater the computational effort.

2.4 Finite differences
The techniques of finite differences consist of replacing the derivatives of the differential equation

(DE) with approximations involving numerical values of functions. Thus we will discretize the
derivative in the time of (1), obtaining the following notation:

q8, 9 = q(G, C); q8, 9+1 = q(G, C + ΔC). (3)

In the explicit method, the equations are independent, which allows direct solutions.This method
is quite simple and fast, but it presents stability problems. Implicit methods show favorable stabilities,
however, the resulting difference equations require system resolutions for each resolution cycle, which
may slow the method.

Applying the finite formulas for the derivatives of (1), the following formulations are obtained:

Explicit Method:

q8, 9+1 = q8, 9 + f
(
q8−1, 9 − 2q8, 9 + q8+1, 9

)
, (4)

Implicit method:

q8, 9−1 = q8, 9 − f
(
q8−1, 9 − 2q8, 9 + q8+1, 9

)
. (5)
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Crank and Nicolson Method:

q8, 9+1 = q8, 9 +
f

2
(
q8−1, 9 + q8−1, 9+1 − 2

(
q8, 9 + q8, 9+1

)
+ q8+1, 9 + q8+1, 9+1

)
, (6)

to f = U2ΔC
ΔG2 .

Complete theory of finite difference techniques in ref. [3] and ref. [4].

2.5 Consistency of numerical methods
The consistency of a numerical method is related to its order of convergence. The order of con-

vergence is given by the order of the error caused by the approximation and the exact solution defined
above. A method that has higher order, for same step sizes, produces more accurate approximations.

Definition I: A numerical method is consistent related to a given equation if the truncation error of
this method for this equation is at least $ (ΔG).

For the diffusion equation (1) the methods present the following order of convergences:

Explicit Method: $ (ΔC + ΔG2).

Implicit method: $ (ΔC + ΔG2).

Crank and Nicolsom method: $ (ΔC2 + ΔG2).

2.6 Stability of numerical methods
To find the approximate solution to a problem, one must have a number of calculations depen-

ding on ΔG and ΔC. That is, the smaller the values the greater the number of steps to arrive at the
approximate solution. This can lead to an uncontrolled accumulation of errors, and in that case,
the applied method is said to be stable or unstable. A numerical method can be interpreted as a
procedure of producing numbers from the initial data. However, these initial data may contain errors
(for example, computer rounding), and if amplified, in a short time the error growth will dominate
the solution produced and it will lose its meaning.

Definition II: A numeric method is stable if the associated difference equation does not amplify
errors from the previous steps.

In general, a numerical method can be classified as:

Conditionally Stable: the methods that must satisfy a condition so that they obtain stable solutions

Unconditionally Stable: Methods that are not required to meet stability conditions.

Unconditionally unstable: There are no criteria for solutions to be stable.
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2.6.1 Method of Von Newmann

TheVonNeumann criterion is widely used to determine the stability of a finite differencemethod.
The difference equation is expanded using the Fourier series expansion, where the decay or growth
of the amplification factor indicates the stability of the method.

Suppose the error of a numeric method can be expanded as follows:

�8 =

#∑
==0

k= · 4�U=8ℎ, 8 = 0, 1, . . . , # (7)

in that �8 is the global error at each point along the line, U= = =c
!
is the wave number in the direction

of G, ! is the length of the x-axis, � =
√
−1, k=, n is the amplitude in the time axis C in n, UC is a

complex number and #ℎ = !.
Representing the error in the initial step, to analyze the subsequent ones it is enough to analyze

the propagation of a generic harmonic,

k=4
�Z84W 9 , (8)

Where Z ∈ R and W ∈ C, both arbitrary. Note that it already acts as the power of 4W. Then the
evolution in time explodes if 4W > 1 or if it tends to zero.

In practice, the difference equation can be applied as follows.

Φ8, 9 = 4
W 94�Z8, (9)

analogously,

Φ8+1, 9 = 4W 94�Z (8+1) ,
Φ8, 9+1 = 4W( 9+1)4�Z8 .

Recital Φ ≈ q.
An equation of differences will be stable if it satisfies the condition of k= does not grow with time,
therefore , the ratio ����k=+1k=

���� ≤ 1,

for every Z . This condition of stability is necessary for convergence of a numerical method, but not
sufficient.

Further details on the Neumann method and the other stability criteria in ref. [4].
In this work, the stability of the numerical formulas was evaluated by Neuman´s criterion .

Therefore, for the explicit, implicit and Crank and Nicolson methods, for the diffusion equation (1),
we have:

I Explicit Method is conditionally stable if f ≤ 1
2 ref. [5];

Demonstration: Applying (9) to (4), yields

4W( 9+1)4�Z8 = 4W 94�Z8 + f
(
4W 94�Z (8−1) − 24W 94�Z8 + 4W 94�Z (8+1)

)
,

4W = 1 + f
(
4−�Z8 − 2 + 4�Z8

)
,
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as 4−�Z8 + 4�Z8 = 2>B(−Z) + �B4=(−Z) + 2>B(Z) + �B4=(Z) = 22>B(Z), then

4W = 1 + f (−2 + 22>B(Z)) .

For the method to be stable, as presented in section 2.6.1, one must assume that
��4_�� ≤ 1 and

impose that 4_ ≥ −1. Thus we have

1 + f (−2 + 22>B(Z)) ≥ −1,

thus,

f ≤ 1
1−2>B(Z) ,

therefore,

f ≤ 1
2
. (10)

II Implicit method is unconditionally stable;

Demonstration: Following the same idea of the explicit method, from (9) to (5), we have the
following development:

4W( 9−1)4�Z8 = 4W 94�Z8 − f
(
4W 94�Z (8−1) − 24W 94�Z8 + 4W 94�Z (8+1)

)
4W 94−W4�Z8 = 4�Z84W 9

[
1 − f

(
4−�Z − 2 + 4�Z

)]
4−W = 1 − f

(
4−�Z − 2 + 4�Z

)
4−W = 1 − f (2>B(−Z) + �B4=(−Z) − 2 + 2>B(Z) + �B4=(Z))

4−W = 1 + 4f
(
2>B(Z) − 1

2

)
4−W = 1 + 4fB4=2 Z

2
,

so,

4W =
1

1 + 4fB4=2 Z
2

. (11)

It is easy to note that (11) is always smaller than for all f. In this case, the method is said to be
unconditionally stable.

III The Implicit Method of Crank-Nicolson is unconditionally stable.;

Demonstration: From (9) to (6), follows
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4W( 9+1)4�Z8 = 4W 94�Z8 + f
2
(4W 94�Z (8−1) + 4W( 9+1)4�Z (8−1) − 24W 9

(
4�Z8 + 4W4�Z8

)
+

+4W 94�Z (8+1) + 4W( 9+1)4�Z (8+1))
4W = 1 + f

2
(4−�Z + 4W4−�Z − 2 − 24W + 4�Z + 4W4�Z )

4W =
1 + f

2 (4
−�Z − 2 + 4�Z )

1 − f
2

(
4−�Z − 2 + 4�Z

)
4W =

1 + f
2 (22>B(Z) − 2)

1 − f
2 (22>B(Z) − 2) ,

Therefore,

4W =
1 − 2fB4=2 Z

2

1 + 2fB4=2 Z
2

. (12)

Clearly (12) is always less than for all f. In this way, this method is unconditionally stable.

2.7 Convergence of numerical method
The method presented here is defined for well-placed problems.

Definition III: A problem is called well-placed if it has only solution that depends continuously on
the initial data or border or both.

The analysis of the convergence of a numerical method is extremely important because it is
expected that the numerical solution produces a solution as close as possible to that of the analytical
solution of the problem. A relation between consistency, stability and convergence is associated
with the Theorem of Lax.

The Lax Theorem: A necessary and sufficient condition for convergence of a method, when applied
to a well-placed initial value problem, is that the discretization scheme is consistent and stable.

3 Implementation:
The Python languagewas used for the implementation of the formulas 4, 5 and 6 that are presented

in ref. [6]. See ref. [7] and ref. [8] for MATLAB implementations.
The formulation 4, because only arithmetic operations is simple implementation. since formu-

lations 5 and 6 present operations with tridiagonal matrices (see [3]) that an auxiliary algorithm
known as the Thomas Algorithm is required (see [8])

The fact of solving these matrices makes processing and the loops of the implicit method codes
slower than the explicit method code. In this way, the data presented in the next subsections is
considered the compilation time for analysis.
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3.1 Problem I
Suppose a metal bar, thermally insulated on its side surface, with constant diffusivity at U2 = 1

and length G = 1, with its ends in contact with blocks of ice at 0 ◦C, and being heated by a torch, so
that the heat at C = 0 obeys the function.

q(G, 0) = 100 · B4=(cG).

Consider all units of measure according to the International System of Units.
The objective is to know the temperature at each point G, as we advance in time, that is, to know

q(G, C) describing the temperature at G at time C.
Thus, the problem can be modeled by the following equation and boundary conditions. The

variable ) is considered the end time of the problem.

qC = qGG , U > 0, 0 ≤ G ≤ 1, C ≥ 0 (13)
q(G, 0) = 100 · B4=(cG), 0 ≤ G ≤ 1
q(0, C) = 0, C > 0
q(;, )) = 0, C > 0

whose exact solution is q(G, C) = 100 · 4−c2C · B4=(cG).
Here we denote by �∗ the mean error of the method and % the processing time of the algorithm

for the solution at the points and [ the standard deviation of the errors in relation to the analytical
solution.

For this problem, we consider the mesh [0, 1] × [0, 0.5], so that ΔG = 0.1 and ΔC = 1/200, for
the first simulation.

f = 1·0.005
0.12

thereby,

f = 1
2

It is observed that the f = 1
2 ≤

1
2 that satisfies the stability condition of the explicit method

described in section 2.6. Table 1 presents the numerical results of the exact and approximate
solutions by the Explicit, Implicit and Implicit method of Crank-nicolson, respectively.

Tabela 1: Numerical results for ΔG = 0.1 and ΔC = 1/200
Exact solution × Numerical results

(G, C) Exact Explicit Implicit Nicolson

(0.0, 0.0) 0.0 0.0 0.0 0.0
(0.1, 0.5) 0.222242 0.204463 0.259880 0.242789
(0.2, 0.5) 0.422730 0.388912 0.494322 0.461813
(0.3, 0.5) 0.581838 0.535291 0.680376 0.635631
(0.4, 0.5) 0.683992 0.629273 0.799829 0.747229
(0.5, 0.5) 0.719192 0.661656 0.840990 0.785683
(0.6, 0.5) 0.683992 0.629273 0.799829 0.747229
(0.7, 0.5) 0.581838 0.535291 0.680376 0.635631
(0.8, 0.5) 0.422730 0.388912 0.494322 0.461813
(0.9, 0.5) 0.222243 0.204463 0.259880 0.242789
(1.0, 0.5) 0.0 0.0 0.0 0.0

�∗ – −4.00 · 10−2 9.00 · 10−2 4.67 · 10−2

[ –
P – 0.008 0.008 0.012
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The explicit method expressed by equation (4) is computationally simple in relation to the
methods described by equations (5) and (6), however, the restriction of the stability of the method
greatly limits the time step ΔC. For the results presented in table 1, it can be observed that, with the
satisfied condition, the mean error modulus of the explicit method was better than the other methods.

In order to improve the average error �∗ of the methods we refine the mesh so that ΔC is the part
of the applied one earlier, thereby , ΔC = 1/600. See f ≈ 0.167 satisfies the stability condition of
(4). observe the results in table 2.

Tabela 2: Numerical results for ΔG = 0.1 and ΔC = 1/600
Exact solution × Numerical results

(G, C) Exact Explicit Implicit Nicolson

(0.0, 0.0) 0.0 0.0 0.0 0.0
(0.1, 0.5) 0.222242 0.222261 0.240739 0.235197
(0.2, 0.5) 0.422730 0.422766 0.457913 0.447372
(0.3, 0.5) 0.581838 0.581888 0.630263 0.615754
(0.4, 0.5) 0.683992 0.684050 0.740919 0.723863
(0.5, 0.5) 0.719192 0.719253 0.779048 0.761114
(0.6, 0.5) 0.683992 0.684050 0.740919 0.723863
(0.7, 0.5) 0.581838 0.581888 0.630263 0.615754
(0.8, 0.5) 0.422730 0.422766 0.457913 0.447372
(0.9, 0.5) 0.222243 0.222261 0.240739 0.235197
(1.0, 0.5) 0.0 0.0 0.0 0.0

�∗ – 4.29 · 10−5 4.20 · 10−2 3.00 · 10−2

[ –
P – 0.017 0.013 0.040

There have been improvements in the error of all methods, it can be verified that the best was
the implied method. Refining the mesh of the problem, now at G, we reduce the size of ΔG by half,
ΔG = 0.05 and keep the step ΔC = 1/600 fixed. Now we have f ≈ 0.667, that is f > 1

2 , which is
outside the condition of (4). The results are presented in table 3.

Tabela 3: Numerical results for ΔG = 0.05 and ΔC = 1/600
Exact solution × Numerical results

(G, C) Exata Explícito Implícito Nicolson

(0.0, 0.0) 0.0 0.0 0.0 0.0
(0.1, 0.5) 0.222242 1.056e+50 0.233664 0.228197
(0.2, 0.5) 0.422730 2.008e+50 0.444456 0.434056
(0.3, 0.5) 0.581838 2.765e+50 0.611742 0.597427
(0.4, 0.5) 0.683992 3.250e+50 0.719145 0.702317
(0.5, 0.5) 0.719192 3.418e+50 0.756154 0.738460
(0.6, 0.5) 0.683992 3.251e+50 0.719145 0.702317
(0.7, 0.5) 0.581838 2.766e+50 0.611741 0.597426
(0.8, 0.5) 0.422730 2.010e+50 0.444456 0.434056
(0.9, 0.5) 0.222243 1.057e+50 0.233664 0.228197
(1.0, 0.5) 0.0 0.0 0.0 0.0

�∗ – e+50 2.6 · 10−2 1.4 · 10−2

[ –
% – 1.2 · 10−2 2.0 · 10−2 4.3 · 10−2

Clearly, the solution of the explicit method was dominated by accumulated errors, making it a
so-called spurious solution. This instabilization of the solution for values ΔG and ΔC justifies the
importance of the study of the stability of a numerical method. Note that, from the physical point
of view, the numerical results do not present reasonable solutions. However, for the implicit and
implicit method of Crank-Nicolson, the solutions improved due to the decrease of the error. In this
way, we will refine the mesh in order to further reduce the average error of the implicit and implicit
method of Crank-Nicolson. Let’s refine the mesh by changing the partition on both axes. In the
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space axis, let ΔG = 0.025 and, in the time axis, ΔC = 1/1000. Then we will make ΔG = 0.025 and
ΔC = 1/10000. The results are presented in results 4 and 5, respectively. As for these values the
combination of the partitions ΔG and ΔC is outside the stability of (4), the numerical solutions of the
explicit method will not be presented in the table.

Tabela 4: Numerical results for ΔG = 0.025 and ΔC = 1/1000
Exact solution × Numerical results

(G, C) Exata Explícito Implícito Nicolson

(0.0, 0.0) 0.0 0.0 0.0 0.0
(0.1, 0.5) 0.222242 – 0.228256 0.225006
(0.2, 0.5) 0.422730 – 0.434169 0.427986
(0.3, 0.5) 0.581838 – 0.597583 0.589072
(0.4, 0.5) 0.683992 – 0.702500 0.692496
(0.5, 0.5) 0.719192 – 0.738653 0.728133
(0.6, 0.5) 0.683992 – 0.702500 0.692496
(0.7, 0.5) 0.581838 – 0.597583 0.589072
(0.8, 0.5) 0.422730 – 0.434169 0.427986
(0.9, 0.5) 0.222243 – 0.228256 0.225006
(1.0, 0.5) 0.0 0.0 0.0 0.0

�∗ – – 1.4 · 10−2 6.3 · 10−3

[ –
% – – 3.8 · 10−2 1.2 · 10−2

Tabela 5: Numerical results for ΔG = 0.01 e ΔC = 1/10000
Exact solution × Numerical results

(G, C) Exata Explícito Implícito Nicolson

(0.0, 0.0) 0.0 0.0 0.0 0.0
(0.1, 0.5) 0.222242 – 0.222873 0.222551
(0.2, 0.5) 0.422730 – 0.423930 0.423317
(0.3, 0.5) 0.581838 – 0.583490 0.582646
(0.4, 0.5) 0.683992 – 0.685933 0.684942
(0.5, 0.5) 0.719192 – 0.721233 0.720190
(0.6, 0.5) 0.683992 – 0.685933 0.684942
(0.7, 0.5) 0.581838 – 0.583490 0.582646
(0.8, 0.5) 0.422730 – 0.423930 0.423317
(0.9, 0.5) 0.222243 – 0.222873 0.222551
(1.0, 0.5) 0.0 0.0 0.0 0.0

�∗ – – 1.4 · 10−3 7.0 · 10−4

[ –
P – – 9.2 · 10−1 2.25

Note that the methods presented their improvements with the refinements of the meshes. That
is, the moreΔG,ΔC → 0, respecting the stability criteria of the method, the error �∗ → 0.

3.2 Problem II
Consider the diffusion equation

DC = DGG , U > 0, 0 ≤ G ≤ 1, C ≥ 0 (14)
D(G, 0) = 2G(1 − G), 0 ≤ G ≤ 1
D(0, C) = 0, C > 0
D(1, )) = 0, C > 0

In that using the procedure presented in (2.2), we find the analytical solution,
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D(G, C) = 16
c3

∞∑
==0

B4=((2= + 1)cG) · 4−(2(2=+1)2c2)C

(2= + 1)3
. (15)

Let us select some times in the solution C = 0, t = 0.05 e C = 0.10. See picture 2

Figura 2: Graph of the analytical solution at times C = 0, C = 0.05 and C = 0.10 of problem II.

Using the steps ΔG = 0.01 and ΔC = 1/100000 and applying the explicit method to find the
approximate solutions for C = 0, C = 0.05 and C = 0.10, we have the data of figure 3. Only the
multiple steps of 0.1 in the space axis are separated for better visualization. Note that the results
are excellent, although it requires a lot of computational effort. The implemented algorithm ran at
a time % = 14.25 seconds, while the implicit and Crank-Nicolson method processed, with the same
steps, at time % = 2.157 seconds and % = 5.122 seconds, respectively. Furthermore, choosing the
combination of the steps ΔG and ΔC so that the stability condition (10) is satisfied is fundamental to
good approximations.
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Figura 3: Graph of the approximate solution by the explicit method at times C = 0, C = 0.05 and
C = 0.10 of problem II.

Now the implicit method is applied for steps ΔG = 0.01 and ΔC = 1/1000. Graph 4 shows good
approximations, not bad for an economy in the time step of 100 times. Although the method solves
systems, the fact of being unconditionally stable makes it possible to use larger steps, reducing the
loops due to # × # matrix resolution.
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Figura 4: Graph of the approximate solution by the implicit method at time C = 0, C = 0.05 e C = 0.10
of problem II.

By further increasing the time step ΔC, so that ΔC = 1/800 and ΔG = 0.1, and applying the
Crank-Nicolson method, figure 5, the approximations were also interesting. This is because this
method, besides being unconditionally stable, is$ (ΔC2+ΔG2). That is, it has its order 2 consistency.
This means that convergence is faster. Therefore, in addition to allowing larger steps, the implicit
method of Crank-Nicolson has greater order of convergence allowing larger steps to be used than
those used in the implicit method.
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Figura 5: Graph of the approximate solution solution by the Crank-Nicolson method at times C = 0,
C = 0.05 e C = 0.10 of problem II.

4 Conclusion
The experiments of the explicit method presented satisfactory results within the interval f ≤ 1

2 .
The analytical and experimental validations prove the ability of this formulation to solve problems
for low values of ΔC with a sufficiently large ΔG. However, the search for values that satisfy the
stability condition can be tedious and the computational cost, due to having a small ΔC, is large.

Numerical results showed that implicit formulations outweigh the stability conditions of the
explicit method, and larger steps within the mesh may be used. However, the approximations
are more satisfactory when ΔG,ΔC → 0, keeping the point (G, C) fixed. On the other hand, the
implicit Crank-Nicolsom formulations, because of their greater order of consistency, show a faster
convergence than the implicit and explicit method, thus allowing even greater steps in the time axis.
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