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A tool for the Analytic Hierarchy Process 

based on Leibniz's formula for determinants 

computation 

 

Uma ferramenta para a Análise Hierárquica de Processos 

baseada na fórmula de Leibniz para cálculo do determi-

nante 

 

Abstract 

In the Analytic Hierarchy Process (AHP) are expected con-

sistent matrices when the decision-maker performs perfect 

judgements. Such matrices rarely appear in real situations, 

since humans do not always decide in the same way. How-

ever, understanding these matrices helps to understand the 

near consistent matrices, which actually occur in real situa-

tions. Therefore, in this paper the Leibniz's formula proper-

ties are explored for these matrices determinant calculus. 

The main objective of this approach is to insert, in the AHP 

framework, new theories to the study of consistent and near 

consistent matrices. For that, two models of near consistent 

matrices are implemented, namely multiplicative and addi-

tive. In addition, some consequent results are explored, 

such as, diagonalization and exponential matrix. 
 

Keywords: Analytic Hierarchy Process. Decision-making. 

Consistent and near consistent matrices. Leibniz's formula. 

Determinant. 
 

Resumo 

Matrizes consistentes são esperadas na Análise Hierárquica 

de Processos (AHP) quando o tomador de decisão executa 

julgamentos perfeitos. Tais matrizes raramente aparecem 

em situações reais, pois humanos nem sempre decidem da 

mesma forma. No entanto, entender essas matrizes ajuda a 

entender as matrizes quase consistentes, que realmente 

ocorrem em situações reais. Portanto, neste artigo são ex-

ploradas as propriedades da fórmula de Leibniz para o cál-

culo do determinante dessas matrizes. O objetivo principal 

desta abordagem é inserir no contexto do AHP novas teo-

rias para o estudo de matrizes consistentes e quase consis-

tentes. Para tanto, são implementados dois modelos de ma-

trizes quase consistentes, a saber, multiplicativo e aditivo. 

Além disso, alguns resultados consequentes dessa aborda-

gem são explorados, como a diagonalização de matrizes e a 

matriz exponencial. 
 

Palavras-chave: Análise Hierárquica de Processos. To-

mada de decisão. Matriz consistente e quase-consistente. 

Fórmula de Leibniz. Determinante. 
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1 Introduction 
 

The Analytic Hierarchy Process (AHP) allows modeling a decision problem as a hier-

archical structure. The decision-maker, from pairwise comparisons, connects the elements to 

this structure (SAATY, 1987). The judgements result is a square pairwise comparison matrix 

𝐴 = (𝑎𝑖𝑗)𝑛×𝑛, for which each element gives the relative importance of one alternative over 

another (ALONSO; LAMATA, 2006). This matrix is named positive reciprocal because it has 

the property that the elements in the main diagonal are unitary, and the elements in the 𝑖-th row 

are the inverse of the elements in the 𝑖-th column (SAATY, 2008). If 𝑎𝑖𝑗𝑎𝑗𝑘 = 𝑎𝑖𝑘, for 𝑖, 𝑗, 𝑘 =

1,⋯ , 𝑛, then the pairwise comparison matrix is said to be a consistent matrix (SAATY, 2003). 

Human judgements must obey a transitive relationship (SAATY, 2008), i.e., if alterna-

tive 𝜑𝑚 is preferable over 𝜑𝑝, and the latter is preferable over 𝜑𝑞, then 𝜑𝑚 is preferable over 

alternative 𝜑𝑞. The consistency (or near consistency) of judgements is very important mainly 

on situations where the decisions lead to critical results (OLIVEIRA; OLIVEIRA; DUARTE, 

2016). Many researchers have addressed the matrices of consistent type. Pelaez and Lamata 

(2003) define a consistency index based on matrix transitivity. Alonso and Lamata (2006) pro-

pose a new consistency analysis approach, which is adaptable for a specific scope. Xu (2000) 

investigates the consistency of weighted mean complex judgement matrices. Leung and Cao 

(2000) propose a fuzzy consistency. Aull-Hyde, Erdogan and Duke (2006) perform a research 

about consistency of aggregated comparison, and Lamata and Pelaez (2002) establish a theorem 

that the determinant of an order-three consistent matrix is null. 

In this paper, we address the theory for calculating determinants based on Leibniz's for-

mula and we present the theory fundamentals aiming to contribute with the AHP framework. 

In order to demonstrate their use, we highlight two main results: the proof that a consistent 

matrix determinant is null and that the near consistent matrix determinant is equal to the per-

turbation matrix determinant. We also present other consequential results. 

 

 

2 Materials and methods 

 

In this section, the mathematical theory required to understand the proposed approach 

is established. 

Definition 2.1. A square matrix 𝑨 =  (𝑎𝑖𝑗)𝑛×𝑛, 𝑛 ≥ 2, is a pairwise comparison posi-

tive reciprocal matrix if each element 𝑎𝑖𝑗 is a judgement of the decision-maker with respect to 

alternative 𝜑𝑖 over alternative 𝜑𝑗, where 𝑎𝑖𝑖 = 1, 𝑎𝑖𝑗 = 1/𝑎𝑗𝑖 and 𝑎𝑖𝑗 > 0 for all 𝑖, 𝑗 =

1, 2,⋯ , 𝑛.  

The values 𝑎𝑖𝑗 = 𝑤𝑖/𝑤𝑗 represent estimations of judgements whose precise values are 

𝑤𝑖 and 𝑤𝑗. Vector of priorities 𝒘 = [𝑤1 𝑤2  ⋯  𝑤𝑛] can be obtained by solving the sys-

tem 𝑨𝒘 = 𝜆𝑚𝑎𝑥𝒘 (SAATY, 2008), where 𝜆𝑚𝑎𝑥 is the largest eigenvalue from the singular 

value decomposition of matrix 𝑨. 

When 𝑎𝑖𝑗𝑎𝑗𝑘 = 𝑎𝑖𝑘 for all 𝑖, 𝑗, 𝑘 = 1, 2,⋯ , 𝑛, 𝑨 is said to be a consistent matrix 

(SAATY, 2003). If the judgements are inconsistent then the resultant matrix will also be incon-

sistent. An inconsistent judgement means that: the alternative 𝜑1 is preferable to 𝜑2, and 𝜑2 is 

preferable to 𝜑3, but 𝜑1 is not preferable to 𝜑3. In other words, the transitive property is not 

applied to inconsistent matrices. It is easy to notice that, if a matrix of judgements is an order-

two matrix, then it can only be a consistent matrix. 
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A near consistent matrix can be obtained by means of two models: multiplicative and 

additive. On the multiplicative model, an 𝑛 × 𝑛 consistent matrix is multiplied by an 𝑛 × 𝑛 

perturbation matrix 𝑬. This way, 𝑨 =  𝑬 ∘ 𝑾, where ∘ is the Hadamard product, 𝑎𝑖𝑗 =

𝜀𝑖𝑗𝑤𝑖/𝑤𝑗, 𝑾 = (𝑤𝑖/𝑤𝑗)𝑛×𝑛, 𝑬 = (𝜀𝑖𝑗)𝑛×𝑛 and each element in 𝑬 satisfies 𝜀𝑗𝑖 = 1/𝜀𝑖𝑗, with 

small values, close to one (SAATY, 2003). If 𝑬 is the identity matrix under the Hadamard 

product, then 𝑨 is a consistent matrix.  

In the additive model, the near consistent matrix is the outcome of additive perturbations 

considering that 𝑎𝑖𝑗 = 𝑤𝑖/𝑤𝑗 + 𝛾𝑖𝑗 (SAATY, 2003). It results in 𝑨 = 𝜞 +𝑾, where 𝜞 =

(𝛾𝑖𝑗)𝑛×𝑛 and the perturbation matrices elements are respectively related by Equations (1) and 

(2) (SAATY, 2003): 

𝜀𝑖𝑗 = 1 +
𝑤𝑗

𝑤𝑖
𝛾𝑖𝑗 and (1) 

𝜞 = (𝑬 − 𝑱) ∘ 𝑾, (2) 

where 𝑱 = (1𝑖𝑗)𝑛×𝑛 is the identity matrix under the Hadamard product. Note that the main di-

agonal elements in 𝜞 are null since 𝑬 and 𝑾 are positive reciprocal matrices, so that 𝜀𝑖𝑖 =
𝑤𝑖/𝑤𝑖 = 1 and 𝛾𝑖𝑗 = (𝜀𝑖𝑗 − 1)𝑤𝑖/𝑤𝑖, if 𝑨 is a consistent matrix. 

 

Example 2.1. Matrix 

𝑸 = [
1 2 8
1/2 1 4
1/8 1/4 1

], 
 

 

is a consistent matrix, so 𝑑𝑒𝑡(𝑸)  =  0. In order to change its consistency, we choose the 

perturbation matrix 

𝑬 = [

1 13/14 51/56
14/13 1 7/8
56/51 8/7 1

]. 
 

In this way, a near consistent matrix is obtained by the Hadamard product as 𝑨 =  𝑬 ∘ 𝑸, 

𝑨 = [

1 13/7 51/7
7/13 1 7/2
7/51 2/7 1

]. 
 

One can verify that 𝑑𝑒𝑡(𝑨)  =  𝑑𝑒𝑡(𝑬). We will prove this general result in the next 

section for any pairwise comparison reciprocal matrix. Now, we consider the additive model 

and the elements of the perturbation matrix obtained in Equation (1): 

𝜞 = [

0 −1/7 −5/7
1/26 0 −1/2
5/408 1/28 0

]. 
 

Therefore, a near consistent matrix is obtained by the addition 𝑩 =  𝑸 +  𝜞. It is clear 

that 𝑩 =  𝑨 since, from Equation (2), 𝑸 +  𝜞 = 𝑬 ∘ 𝑸 = 𝑨. Note that 𝑑𝑒𝑡(𝜞) = 0. We demon-

strate this result shortly.  

In addition to the AHP theory, a brief study on permutations is necessary, since they are 

important tools for the development of this work. From them, it will be addressed the Leibniz's 

formula for determinants computation that is used in the course of theorems and propositions 

demonstrations. 

Let 𝑆𝑛 be the set of bijective mappings 𝜏: {1, 2,⋯ , 𝑛} → {1, 2,⋯ , 𝑛}. 𝜏 is called a per-

mutation of {1, 2,⋯ , 𝑛} and 𝑆𝑛 is the symmetric group of degree 𝑛, where 𝑛 is a positive integer. 

Note that there are 𝑛! permutations. The 𝜏 function has a unique inverse function 
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𝜏−1: {1, 2,⋯ , 𝑛} → {1, 2,⋯ , 𝑛}, which is also a permutation. Moreover, if 𝜎 and 𝜏 are permu-

tations, composite (𝜎 ∘ 𝜏)(𝑖) = 𝜎(𝜏(𝑖)) is also a permutation. A convenient way to denote the 

𝜏 permutation is 

𝜏 = (
1 ⋯ 𝑛
𝜏(1) ⋯ 𝜏(𝑛)

), 
 

where the second row consists in the respective images from the elements in the first row under 

𝜏. In this case 𝜏 is the identity permutation, since 𝜏(𝑖) = 𝑖, ∀𝑖 ∈ {1, 2,⋯ , 𝑛}. Such permutation 

is expressed as 𝜏𝑖𝑑. 

An important concept is that the elements of the 𝑆𝑛  group are related to the sign of a 

permutation. The 𝑠𝑔𝑛(∙)  function is necessary to calculate the determinant through the Leib-

niz's formula. This function computes how much a permutation 𝜏 changes the order of its ele-

ments in comparison to 𝜏𝑖𝑑. Let 𝜂(𝜏) be the number of pairs (𝑝, 𝑞) such that 𝑝 < 𝑞, but 𝜏(𝑝) >
𝜏(𝑞), i.e., (JÄNICH, 1991): 

𝜂(𝜏) = #{(𝑝, 𝑞)| 𝑝 < 𝑞 but 𝜏(𝑝) > 𝜏(𝑞)},  

where # returns the number of pairs (𝑝, 𝑞). The sign of a 𝜏 permutation, represented by 𝑠𝑔𝑛(𝜏), 
is defined as 

𝑠𝑔𝑛(𝜏) = {
       1, if  𝜂(𝜏) is even 

−1, if  𝜂(𝜏) is odd
. 

  

Therefore, 𝑠𝑔𝑛(𝜏) depends only on the parity of 𝜏. Two important properties are 𝑠𝑔𝑛(𝜏 ∙ 𝜎) =
𝑠𝑔𝑛(𝜏)𝑠𝑔𝑛(𝜎) and 𝑠𝑔𝑛(𝜏−1) = 𝑠𝑔𝑛(𝜏). The calculus of the permutation 𝜏 sign is made by 

Equation (3) (ROBINSON, 2003): 

𝑠𝑔𝑛(𝜏) = (−1)𝜂(𝜏). (3) 

Example 2.2. Let 𝑆3 = {1, 2, 3} be a group. We consider the permutation 

𝜏 = (
1 2 3
3 2 1

),  

that is 𝜏(1) = 3, 𝜏(2) = 2 and 𝜏(3) = 1. Therefore, 
1 < 2 but 𝜏(2) < 𝜏(1)

1 < 3 but 𝜏(3) < 𝜏(1)

2 < 3 but 𝜏(3) < 𝜏(2)
. 

 

Since 𝜂(𝜏) = 3 then, according to Equation (3), 𝑠𝑔𝑛(𝜏) = −1. 

Given 𝜏 ∈ 𝑆𝑛, the support of 𝜏 is defined to be the set of all 𝑖 such that 𝜏(𝑖) ≠ 1, sym-

bolically 𝑠𝑢𝑝𝑝(𝜏). A permutation 𝜏 is called an 𝑟-cycle if 𝑠𝑢𝑝𝑝(𝜏) = {𝑖1, 𝑖2, ⋯ , 𝑖𝑟} with distinct 

𝑖𝑘, where 𝜏(𝑖1) = 𝑖2,  𝜏(𝑖2) = 𝑖3, ⋯, 𝜏(𝑖𝑟−1) = 𝑖𝑟 and 𝜏(𝑖𝑟) = 𝑖1. For this reason, 𝜏 is often 

written in the form 𝜏 = (𝑖1 𝑖2⋯ 𝑖𝑟)(𝑖𝑟+1)⋯ (𝑖𝑛). A permutation that does not switch more than 

two adjacent numbers and leaves the remaining 𝑛 − 2 fixed is a neighbour transposition or, 

simply, transposition. This way a transposition is a 2-cycle. Hence, if 𝜎 is a transposition, then 

𝜂(𝜎 ∙ 𝜏) = 𝜂(𝜏) ± 1. 

In the following, we present two results that will be useful throughout the text, especially 

in Theorem 2.1. In Robinson (2003), we found proofs and details of these results. 

Proposition 2.1. If 𝜏 is a transposition then 𝑠𝑔𝑛(𝜏) = −1. 

Proposition 2.2. A permutation 𝜏 ∈ 𝑆𝑛 is even (odd) if and only if it is a product of an 

even (odd) number of transpositions. 

Theorem 2.1, establishes an auxiliary result to demonstrate the theorems about determi-

nants of consistent and near consistent matrices. We show its proof, since it is very important 

to the text. In the proof, symbol (1 2) means that first column of permutation τ is written in the 

form of Example 2.2. 
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Theorem 2.1. For 𝑛 > 1, there are 
1

2
𝑛! even permutations and 

1

2
𝑛! odd permutations in 

𝑆𝑛. 

Proof. Let 𝐴𝑛 be the set of all even permutations in 𝑆𝑛. Defining a function 𝛼: 𝐴𝑛 → 𝑆𝑛 

by the rule 𝛼(𝜏) = 𝜏 ∙ (1 2), observing that 𝛼(𝜏) is odd and 𝛼 is injective, due to Propositions 

2.1 and 2.2, one has 

𝑠𝑔𝑛(𝜏 ∙ (1 2)) = 𝑠𝑔𝑛(𝜏)𝑠𝑔𝑛((1 2)) = 1(−1) = −1, and   

𝜏1 ∙ (1 2) = 𝜏2 ∙ (1 2) ⟹ 𝜏1 ∙ (1 2) ∙ (1 2) = 𝜏2 ∙ (1 2) ∙ (1 2) ⟹
𝜏1 = 𝜏2. 

 

Every odd permutation σ belongs to the image set 𝐼𝑚(𝛼), since 𝛼(𝜏) = 𝜎, where 𝜏 =
𝜎 ∙ (1 2) ∈ 𝐴𝑛. Therefore, 𝐼𝑚(𝛼) is precisely the set of all odd permutations and |𝐼𝑚(𝛼)| =
|𝐴𝑛| where |𝑋| means the cardinality of 𝑋.□ 

Shiraishi, Obata and Daigo (1998), give a last proposition in order to state a basis of 

results for what follows in next section, which is related to a consistent matrix and its charac-

teristic polynomial. 

Proposition 2.3. 𝑨 = (𝑎𝑖𝑗)𝑛×𝑛 is a consistent matrix if and only if 𝑝𝑨(𝜆) = 𝜆
𝑛 −

𝑛𝜆𝑛−1, where 𝑝𝑨(𝜆) is the characteristic polynomial of 𝑨. 

 

3 Results and discussion 
 

Leibniz's formula provides a means to obtain the determinant in terms of the matrix 

elements permutations using the results presented in Section 2. The Leibniz's formula is given 

by Equation (4) for a matrix 𝑨 = (𝑎𝑖𝑗)𝑛×𝑛  

𝑑𝑒𝑡(𝑨) = ∑ 𝑠𝑔𝑛(𝜏)𝜏∈𝑆𝑛 𝑎𝑖𝜏(1)⋯𝑎𝑛𝜏(𝑛), (4) 

where 𝜏 is a permutation in the 𝑆𝑛 group. Jänich (1991) show more details.  

Considering a new approach proposition, some changes in the notations of 𝜏 permuta-

tions are considered. We rewrite Equation (4), using Equation (3), as 

𝑑𝑒𝑡(𝑨) = ∑ [(−1)𝜂(𝜏𝑡)∏ 𝑎𝑖𝜏𝑡(𝑖)
𝑛
𝑖=1 ]𝑛!

𝑡=1 , (5) 

where 𝜏𝑡(𝑖) is 𝑡-th permutation in the 𝑆𝑛 group. Next, we present a lemma for fixing a useful 

result necessary in the main theorems proofs. 

Lemma 3.1. Let 𝜏 ∈ 𝑆𝑛 be a permutation from the set 𝑄 = {1, 2,⋯ , 𝑛} and 𝑨 =

(𝑎𝑖𝑗)𝑛×𝑛 be a matrix. For all 𝑡, 𝑗 ∈ 𝑄, ∏
𝑎𝑖𝑗

𝑎𝜏𝑡(𝑖)𝑗

𝑛
𝑖=1 = 1. 

Proof. For any 𝑡 ∈ 𝑄 there is always an element 𝑎𝜏𝑡(𝑖)𝑗 = 𝑎𝑞𝑗, where 𝑞 ∈ 𝑄. Hence,  

 

∏
𝑎𝑖𝑗

𝑎𝜏𝑡(𝑖)𝑗

𝑛
𝑖=1 =

𝑎1𝑗𝑎2𝑗⋯𝑎𝑛𝑗

𝑎𝜏𝑡(1)𝑗𝑎𝜏𝑡(2)𝑗⋯𝑎𝜏𝑡(𝑛)𝑗
=
𝑎1𝑗𝑎2𝑗⋯𝑎𝑛𝑗

𝑎1𝑗𝑎2𝑗⋯𝑎𝑛𝑗
= 1. □  

 

At last, we state the main results of this work based on the previously established. The 

following theorem uses Leibniz's formula, consistent matrices properties, permutations charac-

teristics according to Lemma 3.1 and the result provided by Theorem 2.1. From now on, we 

refer the matrix 𝑨 = (𝑎𝑖𝑗)𝑛×𝑛 as a pairwise comparison positive reciprocal matrix. 

Theorem 3.1. If 𝑨 is a consistent matrix, then 𝑑𝑒𝑡(𝑨) = 0. 

Proof. Since 𝑨 is a consistent matrix, then 𝑎𝑖𝑗𝑎𝑗𝑘 = 𝑎𝑖𝑘. Setting 𝑘 = 𝜏𝑢(𝑖) then 

𝑎𝑖𝑗𝑎𝑗𝜏𝑢(𝑖) = 𝑎𝑖𝜏𝑢(𝑖) , where 𝜏𝑢(𝑖) ∈ 𝑆𝑛 is a permutation, 𝑢 = 1, 2,⋯ , 𝑛! and 𝑖, 𝑗, 𝜏𝑢(𝑖) =

1, 2,⋯ , 𝑛. Since 𝑨 is reciprocal, then 𝑎𝑗𝜏𝑢(𝑖) = 1/𝑎𝜏𝑢(𝑖)𝑗 , so 𝑎𝑖𝑗/𝑎𝜏𝑢(𝑖)𝑗 = 𝑎𝑖𝜏𝑢(𝑖) . Overriding 

this result in Equation (5), it follows that 
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𝑑𝑒𝑡(𝑨) = ∑ [(−1)𝜂(𝜏𝑢)∏
𝑎𝑖𝑗

𝑎𝜏𝑢(𝑖)𝑗 

𝑛
𝑖=1 ]𝑛!

𝑢=1 . 
 

Due to the result established in Lemma 3.1, one has ∏
𝑎𝑖𝑗

𝑎𝜏𝑢(𝑖)𝑗 

𝑛
𝑖=1 = 1. Therefore, 

𝑑𝑒𝑡(𝑨) = ∑ (−1)𝜂(𝜏𝑢)𝑛!
𝑢=1 .  

According to Theorem 2.1, there will be 
1

2
𝑛!  even values and  

1

2
𝑛! odd values of 𝜂(𝜏𝑢). 

Finally, the summation is 

𝑑𝑒𝑡(𝑨) = ∑ (−1)𝜂(𝜏𝑢)𝑛!
𝑢=1 = (−1) + (−1) +⋯+ (−1)⏟                

1

2
𝑛! times

+ 1 + 1 +⋯+ 1⏟        
1

2
𝑛! times

= 0. □  

 

An immediate consequence from Theorem 3.1 is related to the largest eigenvalue 𝜆𝑚𝑎𝑥. 

Proposition 3.1 shows that it is the only non-null eigenvalue from a consistent matrix. This 

result is already known, but here a new way of demonstrating it is presented. 

Proposition 3.1. If 𝑨 is a consistent matrix, then all its eigenvalues are null, except the 

maximum that is equal to 𝑛, named 𝜆𝑚𝑎𝑥. 

Proof. Since 𝑨 is a consistent matrix then from Theorem 3.1 𝑑𝑒𝑡(𝑨) = 0. However, 

𝑑𝑒𝑡(𝑨) = 𝜆1𝜆2⋯𝜆𝑛, so 𝜆𝑖 = 0 is an eigenvalue of 𝑨, for some 𝑖 = 1,⋯ , 𝑛. Consider the linear 

system 𝑨𝐯𝑖 = 𝜆𝑖𝐯𝑖, where 𝐯𝑖 is 𝑖-th eigenvector of 𝑨. By definition 𝐯𝑖 ≠ 0 for all 𝑖, consequently 

there must be some 𝑛 ≥ 𝜆𝑘 ≠ 0, 𝑘 ≠ 𝑖, since 𝑛 = 𝑡𝑟𝑎𝑐𝑒(𝑨) = ∑ 𝜆𝑗
𝑛
𝑗=1 . Therefore 

𝑛 − 𝜆𝑘 = ∑ 𝜆𝑗
𝑛
𝑗=1   
𝑗≠𝑖,𝑘

.  

From Proposition 2.3, 𝑝𝑨(𝜆) = 𝜆
𝑛 − 𝑛𝜆𝑛−1. Its zeros are found making 𝑝𝑨(𝜆) = 0 for some 

eigenvalue 𝜆, hence  

𝑝𝑨(𝜆𝑘) = 0 ⟹ 𝜆𝑘
𝑛 − 𝑛𝜆𝑘

𝑛−1 = 0.  

Therefore, 𝜆𝑘 = 𝑛 and 
∑ 𝜆𝑗
𝑛
𝑗=1   
𝑗≠𝑖,𝑘

= 0,  

where 𝜆𝑘 is the largest eigenvalue of 𝑨, named 𝜆𝑚𝑎𝑥. □ 

 

From Leibniz's formula, we also derive the determinant for a near consistent matrix. 

Theorem 3.2 states such result. 

Theorem 3.2. Let 𝑬 = (𝜀𝑖𝑗)𝑛×𝑛 be a perturbation matrix and 𝑾 = (𝑤𝑖/𝑤𝑗)𝑛×𝑛. If 𝑨 =

𝑬 ∘𝑾 is a near consistent matrix with respect to multiplicative model, then 𝑑𝑒𝑡(𝑨) = 𝑑𝑒𝑡 (𝑬). 
Proof. Since 𝑎𝑖𝑗 = 𝜀𝑖𝑗𝑤𝑖/𝑤𝑗, setting 𝑗 = 𝜏𝑢(𝑖), 𝑢 = 1, 2,⋯ , 𝑛!, 𝑖, 𝑗 = 1, 2,⋯ , 𝑛 and 

considering Equation (5), one has  

𝑑𝑒𝑡(𝑨) = ∑ [(−1)𝜂(𝜏𝑢)∏ 𝜀𝑖𝜏𝑢(𝑖)
𝑤𝑖

𝑤𝜏𝑢(𝑖)

𝑛
𝑖=1 ]𝑛!

𝑢=1 . 
 

The denominator 𝑤𝜏𝑢(𝑖) will always be the product 𝑤1𝑤2⋯𝑤𝑛 just changing the terms 

positions for any 𝑢. Therefore, ∏ 𝑤𝜏𝑢(𝑖) = ∏ 𝑤𝑖
𝑛
𝑖=1

𝑛
𝑖=1   for any 𝑢, so 

∏
𝑤𝑖

𝑤𝜏𝑢(𝑖)

𝑛
𝑖=1 =

∏ 𝑤𝑖
𝑛
𝑖=1

∏ 𝑤𝑖
𝑛
𝑖=1

= 1,  

and then, from Leibniz’s formula, 

𝑑𝑒𝑡(𝑨) = ∑ [(−1)𝜂(𝜏𝑢)∏ 𝜀𝑖𝜏𝑢(𝑖)
𝑛
𝑖=1 ]𝑛!

𝑢=1 = 𝑑𝑒𝑡 (𝑬). □  

 

Note that if 𝑬 =  𝑱 (which characterizes a neutral perturbation matrix) then 𝑨 = 𝑬 ∘𝑾 is a 

consistent matrix, since 𝑑𝑒𝑡(𝑬) = 0.  It is still in accordance with Theorem 3.2. We highlight 

that we obtain the same result taking into account the similarity between 𝑨 and 𝑬 (see Proposi-

tion 3.2 below). 
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Considering now the perturbation additive model, Theorem 3.3 provides the determi-

nant only for the related matrix 𝜞, because it is clear that the determinant of a near consistent 

matrix is the same for both perturbation models, owing to relation 𝑾 +  𝜞 = 𝑨 = 𝑬 ∘𝑾, since 
∏ 𝑤𝑖/𝑤𝜏𝑢(𝑖)
𝑛
𝑖=1 = ∏ 𝑤𝑖

𝑛
𝑖=1 /∏ 𝑤𝑖

𝑛
𝑖=1 = 1 (Theorem 3.2 demonstration), from Leibniz’s for-

mula, it results that 𝑑𝑒𝑡(𝑾) = 0. 

Theorem 3.3. Let 𝜞 = (𝛾𝑖𝑗)𝑛×𝑛 be a perturbation matrix and 𝑾 = (𝑤𝑖/𝑤𝑗)𝑛×𝑛. If 𝑨 =

𝜞 +𝑾 is a near consistent matrix with respect to additive model, then 𝑑𝑒𝑡(𝜞) = 0. 

Proof. Applying the determinant operator to both sides of the matrix equation 𝑨 −𝑾 =
𝜞 results 𝑑𝑒𝑡(𝑨 −𝑾) = 𝑑𝑒𝑡 (𝜞). Since that the elements of  𝑨 −𝑾 are 𝑎𝑖𝑗 − 𝑤𝑖/𝑤𝑗 = 𝛾𝑖𝑗, 

from Equation (5) it follows that 

 

𝑑𝑒𝑡(𝜞) = ∑ [(−1)𝜂(𝜏𝑡)∏ 𝛾𝜏𝑡(𝑖)𝑗
𝑛
𝑖=1 ]𝑛!

𝑡=1 . 

 

When 𝜏𝑡(𝑖) = 𝑖 then 𝑎𝑖𝜏𝑡(𝑖) = 1 = 𝑤𝑖/𝑤𝜏𝑡(𝑖), for any 𝑡. So, ∏ (𝑎𝑖𝜏𝑡(𝑖) −
𝑛
𝑖=1

𝑤𝑖

𝑤𝜏𝑡(𝑖)
) = ∏ 𝛾𝜏𝑡(𝑖)𝑗

𝑛
𝑖=1 = 0, therefore 𝑑𝑒𝑡(𝜞) = 0. □ 

 

Proposition 3.2. Let 𝑨 = 𝑬 ∘𝑾 = (𝑎𝑖𝑗)𝑛×𝑛 and 𝑨′ = 𝜞 +𝑾 = (𝑎′𝑖𝑗)𝑛×𝑛 be near con-

sistent matrices, with respect to multiplicative and additive models, respectively. Let 

𝑬 = (𝜀𝑖𝑗)𝑛×𝑛 and 𝜞 = (𝛾𝑖𝑗)𝑛×𝑛 be perturbation matrices and 𝑾 = (𝑤𝑖/𝑤𝑗)𝑛×𝑛. For these per-

turbation models 𝑨 is similar to 𝑬 and to 𝜞 +𝑾. 

Proof. From Theorem 3.2 we know that 𝑑𝑒𝑡(𝑨) = 𝑑𝑒𝑡(𝑬). Let 𝑫 = 𝑑𝑖𝑎𝑔(𝑤1,⋯ , 𝑤𝑛) 
be a diagonal matrix. We can write 𝑑𝑒𝑡(𝑨)𝑑𝑒𝑡(𝑫) = 𝑑𝑒𝑡(𝑫)𝑑𝑒𝑡(𝑬), so 𝑨𝑫 = 𝑫𝑬⟹ 𝑨 =
𝑫𝑬𝑫−1. Since 𝑑𝑒𝑡 (𝑨) = 𝑑𝑒𝑡(𝜞 +𝑾), in the same way, 𝑨 = 𝑫(𝜞 +𝑾)𝑫−1. □ 

 

An immediate consequence from Proposition 3.2 is that: 𝑨, 𝑬 and 𝜞 +𝑾 have the same 

determinant, eigenvalues, rank and characteristic polynomial and 𝑨 is invertible if and only if 

𝑬 and 𝜞 +𝑾 are invertible (ROBINSON, 2003). This is in accordance with the above results 

on consistent and quasi-consistent matrix determinants. 

It was presented in Proposition 3.1 that 𝜆 = 0 is an eigenvalue from a consistent matrix 

𝑨. Thus, we can consider the homogeneous linear system 𝑨𝒙 = 𝟎: 

 

[

1 𝑎12
1/𝑎12 1

… 𝑎1𝑛
⋯ ⋮

⋮ ⋮
1/𝑎1𝑛 1/𝑎2𝑛

⋱ ⋮
⋯ 1

] [

𝑥1
𝑥2
⋮
𝑥𝑛

] = [

0
0
⋮
0

]. 

 

Since 𝑑𝑒𝑡(𝑨) = 0, by Theorem 3.1, the system has infinitely many solutions. The 𝑛 − 1 last 

equations are multiple of the first equation. Hence, 

𝒙 = [

𝑥1
𝑥2
⋮
𝑥𝑛

] = [

−(𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛)
𝑥2
⋮
𝑥𝑛

]. 

 

So, the eigenvector space associated to 𝜆 = 0 is generated by 
{(−𝑎12, 1, 0, … ,0), (−𝑎13, 0, 1, … ,0),… , (−𝑎1𝑛, 1, 0, … ,1)},  

Consider vector 𝒗 = [1, 𝑎12
−1, … , 𝑎1𝑛

−1] and from Proposition 3.1, which provides 𝜆𝑚𝑎𝑥 =
𝑛, one can conclude that 𝑨𝒗 = 𝑛𝒗. In fact 
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[

1 𝑎12
1/𝑎12 1

… 𝑎1𝑛
⋯ ⋮

⋮ ⋮
1/𝑎1𝑛 1/𝑎2𝑛

⋱ ⋮
⋯ 1

] [

1
𝑎12
−1

⋮
𝑎1𝑛
−1

] − 𝑛 [

1
𝑎12
−1

⋮
𝑎1𝑛
−1

] = [

0
0
⋮
0

]. 

 

 

Proposition 3.3. Every consistent matrix 𝑨 is diagonalizable. 

Proof. Consider the 𝑛 eigenvectors from 𝑨: 𝒗1 = [−𝑎12, 1, 0, … ,0], 𝒗2 =
[−𝑎13, 0, 1, … ,0], … , 𝒗𝑛−1 = [−𝑎1𝑛, 1, 0, … ,1] and 𝒗𝑛 = [1, 𝑎12

−1, … , 𝑎1𝑛
−1]. These 𝑛 eigenvec-

tors are linearly independent, hence 𝑨 is diagonalizable. □ 

 

The result presented in Proposition 3.3 implies that 𝑨 is similar to the diagonal matrix 

𝑩 = 𝑑𝑖𝑎𝑔(0,0,⋯ , 𝑛) which is formed by eigenvalues of 𝑨, i.e., 𝑨 = 𝑷𝑩𝑷−1, where 

𝑷 =

[
 
 
 
 
 
 
−𝑎12 −𝑎13 −𝑎14
1 0 0
0 1 0

⋯ −𝑎1𝑛 1

⋯ 0 𝑎12
−1

⋯ 0 𝑎13
−1

    0        0        1    
⋮ ⋮ ⋮
0 0 0

⋯     0    𝑎14
−1

⋯ ⋱ ⋮
⋯ 1 𝑎1𝑛

−1]
 
 
 
 
 
 

 and 

 

 

𝑷−1 =
1

𝑛

[
 
 
 
 
 
1/𝑎12 1 − 𝑛 𝑎13/𝑎12
1/𝑎13 𝑎12/𝑎13 1 − 𝑛
1/𝑎14 𝑎12/𝑎14 𝑎13/𝑎14

𝑎14/𝑎12 ⋯ 𝑎1𝑛/𝑎12
𝑎14/𝑎13 ⋯ 𝑎1𝑛/𝑎13
1 − 𝑛 ⋯ 𝑎1𝑛/𝑎14

⋮     ⋮        ⋮    
1/𝑎1𝑛 𝑎12/𝑎1𝑛 𝑎13/𝑎1𝑛
−1 −𝑎12 −𝑎13

 ⋮     ⋮        ⋮          
𝑎14/𝑎1𝑛   ⋯ 1 − 𝑛
−𝑎14    ⋯ −𝑎1𝑛 ]

 
 
 
 
 

. 

 

 

Therefore, due to the similarity between 𝑨 and 𝑩, 𝑑𝑒𝑡(𝑨) = 𝑑𝑒𝑡(𝑩) = 0. □ 

 

Proposition 3.4. The 𝑘-th power of a consistent matrix 𝑨, denoted by 𝑨𝑘, is similar to 

matrix 𝑩𝒌 = 𝑑𝑖𝑎𝑔(0,0,⋯ , 𝑛𝑘). 
Proof. Since 𝑨 = 𝑷𝑩𝑷−1, where 𝑷, 𝑷−1 and 𝑩 are matrices defined above, one has 

𝑨𝑘 = 𝑷𝑩𝑘𝑷−1. □ 

 

Proposition 3.5. The exponential of a consistent matrix 𝑨, denoted by 𝑒𝑨, is similar to 

matrix 𝑒𝑩 = 𝑑𝑖𝑎𝑔(1,1,⋯ , 𝑒𝑛). 
Proof. Observe that 𝑒𝑨 = ∑ 𝑨𝑘/𝑘!∞

𝑘=0 = ∑ 𝑷𝑩𝑘𝑷−1/𝑘!∞
𝑘=0 = 𝑷∑ 𝑩𝑘/𝑘!∞

𝑘=0 𝑷−1 =
𝑷𝑒𝑩𝑷−1. Since 𝑒𝑩 = 𝑑𝑖𝑎𝑔(𝑒0, 𝑒0, ⋯ , 𝑒𝑛) = 𝑑𝑖𝑎𝑔(1,1,⋯ , 𝑒𝑛), it follows the result. □ 

 

Proposition 3.6. The determinant of an exponential consistent matrix 𝑒𝑨 is equal to 𝑒𝑛. 

Proof. According to the proof of Proposition 3.5 𝑑𝑒𝑡 (𝑒𝑨) = 𝑑𝑒𝑡(𝑷𝑒𝑩𝑷−1) =
𝑑𝑒𝑡(𝑷)𝑑𝑒𝑡(𝑒𝑩)𝑑𝑒𝑡(𝑷−1) = 𝑑𝑒𝑡(𝑒𝑩) where 𝑒𝑩 = 𝑑𝑖𝑎𝑔(1,1,⋯ , 𝑒𝑛) and 𝑩 =
𝑑𝑖𝑎𝑔(0,0,⋯ , 𝑛) = (𝑏𝑖𝑗)𝑛×𝑛. However, from Leibniz’s formula 

𝑑𝑒𝑡(𝑒𝑩) = ∑ [(−1)𝜂(𝜏𝑡)∏ 𝑒𝑏𝑖𝜏𝑡(𝑖)𝑛
𝑖=1 ]𝑛!

𝑡=1 = ∏ 𝑒𝑏𝑖𝑖𝑛
𝑖=1 , 

 

 

since 𝜏𝑡(𝑖) ≠ 0 if 𝜏𝑡(𝑖) = 𝑖 and 𝜂(𝜏𝑡) is even in this case. Nevertheless, the elements from the 

diagonal exponential matrix assume only the values 

𝑒𝑏𝑖𝑖 = {
𝑒𝑛, if 𝑖 = 𝑛

       1 , otherwise
. 
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So, 𝑑𝑒𝑡 (𝑒𝑨) = 𝑒𝑛 = 𝑒𝑡𝑟𝑎𝑐𝑒(𝑩) . □ 

 

4 Conclusion 
 

This theoretical paper addressed a tool based on Leibniz's formula for calculating deter-

minants aiming to complement the framework of AHP theory. It was studied the determinant 

of consistent and near consistent matrices, present in multi-criteria decision-making processes. 

Results of this approach, such as diagonalization and exponential consistent matrix, were also 

explored. Future works include the proposition of new consistent indexes based on Leibniz's 

formula. 
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