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Abstract

This work presents a review of an algorithm to calculate the
Mittag-Leffler function. In order to do it, we follow the def-
inition of the Mittag-Leffler function in Refs. (GORENFLO;
LOUTCHKO; LUCHKO, 2002; DIETHELM et al., 2005) and
discuss some of its properties. Then, we revise the numerical
algorithm in Ref. (DIETHELM et al., 2005) and plot some
cases of Mittag-Lefller function performed. In addition, we
discuss the accuracy and convergence of the presented algo-
rithm.
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1 Introduction

The Mittag-Lefller function was introduced in 1903 when G. Mittag-Leffler published a paper
about the problem of Laplace-Abel integrals (MITTAG-LEFFLER, 1903, 1903). Further, Wiman
extended the concept by introducing the Generalized Mittag-Leffler function (WIMAN, 1905).
However, the Mittag-Leffler function became well known after the 1970s when fractional calculus
received more attention from mathematicians. In this context, many problems provide a more
accurate description of reality when described in terms of fractional order differential equations.
In particular, we cite the time-dependent phenomena, in which the fractional derivatives describe
memory and hereditary effects in an excellent way (PODLUBNY, 1999). In addition, we emphasize
that the impulse response of fractional linear systems can be expressed in terms of Mittag-Leffler
function (MAGIN et al., 2011). Finally, the Mittag-Leffler function is one of the most important
tools in fractional calculus because it appears in the solutions of some fractional order differential
equations.

In this perspective, the computation of the Mittag-Leffler function is not trivial, except when
we consider small values of the argument. In general, numerical algorithms for computation of the
Mittag-Leftler function present problems of accuracy and convergence. In this sense, we need an
efficient algorithm to do it. Then, in this paper, we address this problem and present an efficient
numerical algorithm developed by Gorenflo for accurately computing the Mittag-Lefller function.
Further, we apply the proposed numerical methodology presenting some figures to compare our
calculations to some results from literature. Finally, the results show the convergence power of the
algorithm.

The paper is organized as follows. Section 2 introduces the Mittag-Leffler and Generalized
Mittag-Leffler function and their properties. Section 3 address the revised algorithm for computing
the Mittag-Leffler function. In Section 4, we apply the algorithm. Finally, Section 5 draws the main
conclusions.

2 Mittag-Lefller function

This section presents the Mittag-Lefller function and address its main properties.

Magnus G. Mittag-Leffler introduced in 1903 (MITTAG-LEFFLER, 1905) the Mittag-Lefller
function, which is one of the most relevant tools to fractional calculus. The Mittag-Lefller function
is an extension of the exponential function to arbitrary complex numbers a such as Re{a} > 0, and
defined as (OLDHAM; SPANIER, 1974; HAUBOLD; MATHAI; SAXENA, 2011)

& k
Z
Ea(2) :;)r(kml)’ S

where I'(z) = /OOO x* e dx, Re{z} > 0, z € C, denotes the Gamma function.
It is easy to show that the Mittag-Leffler function for some integer values of @ is given by
(HAUBOLD; MATHAI; SAXENA, 2011; HERRMANN, 2011)

1
Ey(z) = T lz] <1 (2)
-z
Ei(z) = € (3)
E>(z) = cosh(Vz). “4)
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We can define the Generalized Mittag-Leffler function by (OLDHAM; SPANIER, 1974; HAUBOLD;

MATHALI; SAXENA, 2011)
k

= z
E,p(z) = kZ:(:) Tkat )’ )

Re{a} > 0, Re{B} > 0. This means that E, ;(z) = Eq(2).
In the study of the analytical properties of the generalized Mittag-Leffler function one can resort
to the integral representations in the complex plane(OLDHAM; SPANIER, 1974; HAUBOLD:;

MATHAI; SAXENA, 2011)
1 1Bl
Eqop(2) = =—— dt, (6)
c

2mi ¥ —z

where Re{a} > 0, Re{B8} > 0 and the contour C starts and ends at infinite and circles around the
singularities and branch points of the integrand.

Below are some examples of functions written in terms of Generalized Mittag-Leffler function
(HAUBOLD; MATHAI; SAXENA, 2011; HERRMANN, 2011)

Eia(z) = © Z_l )
Exi(=2) = cos(2) ®)
Era(-2) = S“‘Z(Z). ©)

In the sequence, we present useful properties of Generalized Mittag-Leffler function (HAUBOLD;
MATHAI; SAXENA, 2011; HERRMANN, 2011)

1

E(y,ﬁ(z) = ZE(Y,CY+,3(Z)+W (10)
d

Eop(z) = ﬁEa,,BH(Z)"'aZd_ZEa,,BH(Z) (11)

The properties presented here will be useful in understanding the algorithm that will be discussed
in the next section. Given the relevance of the Mittag-Leffler function in the framework of fractional
calculus, especially in the resolution of fractional differential equations, developing strategies to
calculate it accurately is essential for future developments.

For convenience, we follow the definitions in Refs. (GORENFLO; LOUTCHKO; LUCHKO,
2002; DIETHELM et al., 2005), which are only the Eq. (5) with the change of variable * = A and
a contour C dividing the complex plane into two regions:

e (1=B) o
Eap(2) =5 / — = 9 2 GT(p9), (12)
at Jy(p:p) <
and
l/a _
1 « 1 et " AU-Pe

Eqp(z) = =Pl 4 > / — 4 z€ G (p; ). (13)

a Tat Jy(p:¢) -2

where y(p; ¢) is a contour in the complex A-plane obeying the following requirements:
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(a) theray argd=—¢, [1| > pwithp >0, 0 < ¢ < 7;
(b) the arc —¢ < argd < ¢ from the circumference || = p;
(c) theray argd=¢, |1| > p.

The domains G (p;¢) and G~ (p; ¢) are to the right and the left of the contour y(p; @),
respectively, dividing the complex A-plane into two unbounded parts when 0 < ¢ < &. For ¢ =,
G (p; ¢) becomes the circle |1] < p and, consequently, G™*)(p; ¢) will comprise the region
{4 : |argd| < 7, |4| > p}. The integral representations (12) and (13) are such that 0 < @ < 2, B is
arbitrary and

C;—ﬂ < ¢ < min{m,anr} (14)

In Ref. (GORENFLO; LOUTCHKO; LUCHKO, 2002) one can find the following asymptotic
expansions( with |z| — oo) for 0 < @ < 2, B8 being arbitrary, and ¢ inside the interval (14):

1 _ a 1/a P Z_k 1
E,p(z) = EZ(I Bla gzl _ Z TG —ak) +0(|z|7'P), for |argz| < ¢, (15)
k=0
and
p -k
< —1-
E, =— ——+0 2y, fi < <m, 16
5(2) ;F(ﬁ_ak) +0(al!77). for ¢ < Jargs] < (16)

with p € N. It s also possible to find more suitable formulas obtained from the integral representa-
tions (12) and (13) in the particular case for 0 < @ < 1, 8 € R, and |z| # O:
1)|argz| > an

(0]

EQ,B(Z) = /K(a/,,B,)(, )dy, fB<l+a (17
0
[oe] am
Eop(z) = /K(a,ﬁ,)(,z)d)(+/P(a,ﬁ,p,¢,z)d¢, p>0,BeR (18)
P —-an
2)|argz| < am
r 1
Eop(z) = /K(a,ﬁ,)(, 2)dy + Ez(l_ﬂ)/“ezl/ , ifB<l+a (19)
0
(69 am 1
Eop(z) = / K(a, B, x,2)dy + / P<a,/3,p,¢,z)d¢+;z“—ﬂ”ae*“, O<p<lzl, BeR
P —-an
(20)
3)|argz| = an
o0 aTn
Eopl2) = / K(a. B x. 2)dy + / P(a.p.p.¢.2)dd, p> ), BeR @1
P —-am
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with
1 sin 1- — zsin 1-8+
Kafr.s) = e g (XS0 =l = zsin[x(1 =g+l
an x% —2xzcos (an) + 72
1 _8)/a o cos (w) + i sin (w)
P(a,B,p,$.2) = 5—p" P exp[p!/"cos (¢/a)] : (23)
2an pexp (ig) —z
w = ¢[1+(1=p)/al+p""sin(¢/a) (24)
Finally, for @ > 1 and 8 € R one can use the following especial formula:
1 ko—1
- 1/ko ;
Eap(d)= 1 kZ::‘) Eajtos (270 exp (127K /o)) 25)

with kg = |a]+1. Other special cases can be found in Refs. (GORENFLO; LOUTCHKO; LUCHKO,
2002; DIETHELM et al., 2005)that are omitted here since the revised algorithm is presented in the
next section.

3 Numerical algorithm

The algorithm summarizes the conditions and results of Egs. (15)-(25). Special attention is
deserved to Eq. (21) and its condition of convergence. In fact, the version of algorithm found in
Ref. (GORENFLO; LOUTCHKO; LUCHKO, 2002) uses p = (|z| + 1)/2 in Eq. (21), which is not
correct. To circumvent this situation we choose p = |z| + 1 to satisfy the correct condition playing
an important role when one calculates the derivative of the Mittag-Lefller function as we will see in
the next section. We present bellow the revised numerical algorithm from Ref. (DIETHELM et al.,
2005) to calculate the Mittag-Lefller function with minor corrections.

Algorithm 1

Require: @ >0,8e€R,e>0,0<{¢<1,z€C
1: if z = 0 then

20 Eqp(0)=1/I'(B)

3: elseif @ = 8 =1 then

4 Epi(z) =éf

5: elseif 1 < a then

6: ko=la]+1
ko—1

T Eap(d) =& 3 Eapiop (290 exp 27k ko))
k=0

8: else

9: if |z| < £ then

10: ko = max{f(l —B)/al, [In[e(1 = |z])]/In (|z)T}

11: Eop(z) = Z ZX/T(B + ak)

12: else if |z| < L10+ S5a| then
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13:

14:

15:

18:
18:

20:

21:

22:

23:
24:
25:

26:

27:
28:

29:
30:

31:

32:
33:

34.

35:
36:

37:

max{1,2|z|, [~ In (ex/6)]"} B =0
X0 = o 3 €n ¢
'”x%W+”’”“[2mﬁMM+aQWWMH} p<0

1oy xsin [r(1-p)]—zsin [ (1-B+a)]
) x2-2xzcos (an)+z2

L e
K(a,B, x,2) =o=x"Pexp (—x

P(a, B, p.6.2) =500 P exp [/ cos (p/a) | <l )

w=¢[1+(1-p)/a]l+p"*sin(¢/a)

if |argz| > axr and ||argz| — an| > € then
if 8 < 1+ a then
X0

Eqp(2) = / K(a,B, x,2)dy

0
else
X0 arn
Eup() = [ K(@poxade+ [ Plap1o.0d0
1 —am
end if

else if |argz| < ar and ||argz| — an| > € then
if 8 <1+ a then

else

X0
1 @
Eqap(z) = /K(a,ﬁ,x, 2)dy + —z(1-P)aer!
a
0
else
X0 an
Eop(2) = /K(a,ﬁ,)(,z)d)(+/P(a,ﬁ,|z|/2,¢,z)d¢
lz|/2 —an
1 (1-B)/a 2@
+ —zU=B) e,z
a
end if
else
X0 an
Eup() = [ KGapoddy+ [ Plapilel+1.0.20d0
|z|+1 —ar
> Modified expression
end if
0 if B8—ake{0 Z~
a(k) = it f-a {0y or > To avoid divergences

| 1/T(B - ak) otherwise
ko =[—1In(e)/In(|z])]
if |argz| < 3an/4 then

1 (l— )/ 1/a ko —k
Ea,ﬁ(Z)=5Z e ez _k;oz a(k)
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38: else .
0
39: E,p(z) == X z7%a(k)
k=0
40: end if
41: end if
42: end if

4 Algorithm tests

To deploy Algorithm 1, we used Python version 3.7.4. For the integrals present in the algorithm
we used the adaptive scipy.integrate.quad package, which uses a technique from the Fortran library
QUADPACK. The default absolute error of convergence for all integrals is 1.49x 1078, which we found
to be reasonable for our calculations. To manipulate arrays, object types and calculate some necessary
mathematical functions, we resort to the numpy package. Special attention must be deserved to the
function P(«a, B, p, ¢, 7). The reason for that is that this function oscillates around the origin. To get
the precision we were looking for we divided the interval of integration(—anm < ¢ < am) into ten
subintervals and then applied the adaptive scipy.integrate.quad.

Depending on the values of @ and if 0 < |z| < xo, the K(«, S, x,z) function can manifest
singularities at values of y = |z|. To circumvent this situation one can divide the interval of
integration into two parts: 0 < y < |z] —d and |z] + 8 < xy < xo, with § = 2 x 10* at most of
the cases. We found that a better precision can be reached if one uses the scipy.integrate.quadrature
package with the options tol=1E-14, rtol=1E- 14, maxiter=1000 set.

In the work of Diethelm er al.(DIETHELM et al., 2005), the parameters used in Algorithm 1
must be such that € is equal to the machine epsilon and { must be closer to 1. For £, we used 0.9
for all calculations and € = 2.22 x 107!6 (the machine epsilon), as suggested in Ref.(DIETHELM
et al., 2005). This does not mean one can reach such a precision for every calculation. To illustrate
this, we tested the analytical result of Eq. (7) against the Algorithm 1 for several values of z. In this
particular case, @ = 1, § = 2, and z is a real number. In Python the numpy package gives an efficient
function to calculate argz in the interval —m < argz < & using numpy.angle(z). The absolute error
values between E1 5(z) and the analytical expression Eq. (7) are summarized in Table 1.

Table 1: Absolute errors calculated for Eq. (7). These results are for € = 2.22 X 10716,

Function| z =-15.5 z=-10 z=-5 z=-1 z=1 z=5 z=10 z=25

E12(z2) |1.20x107% 4.73x10715 2.78x107'7 1.11x1071® 2.22x107'6 0.00 0.00 0.00

For values in the interval —15 < |z| < 15, we obtained at most 21.3 X € for the absolute error
value. However, for the value z = —15.5 we obtained about 1.20 x 1078 for the absolute error value.
This result is due to the relations at the end of Algorithm 1 given by Egs. (15) and (16). For this
particular choice of @ = 1 and B = 2, the values of the argument of the Gamma function that appears
in the summation, I'(8 — ak), can assume negative integer values, which is well known that diverges.
In Python, this is not a problem in a division, which gives a result of zero in an ordinary case.
However, this can be a problem for deployment in other programming languages. For this reason,
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we defined the function a(k) in Algorithm 1. In Python, it is straightforward to avoid divergences
with this function just giving the one-line command:

a=lambda x: 0 if x.is_integer()==True and x<0 else 1./gamma(x)

where x =  — ak and gamma is the scipy.special.gamma function. Note that when |z| > 15, E, g
is calculated by Egs. (15) and (16), but k( assumes values like | —In (€)/In (|z]) |, which in our case
is about 13. It happens that 8 — ak assumes negative integer values from k£ > 1 in this particular
case of @ and B. Then, for k = 1 the asymptotic behavior of E1 is inside the convergence radius
and converges with 1/z. That is the reason we obtained such an absolute error value at |z| = —15.5,
which is calculated through Eq. (16), converging with 1/z, for negative values. For example, if
|z| = =25 one gets 5.56 x 10~13, corroborating our assertion. For positive values, there is no problem
and the truncated series converges well.

T T T T T T T T 1
Py =y 0=0.25 ------ 0=1.0 ------ 0=1.75 -—-—-
Pa % o=1.0 -~ derivative | derivative
08 % ™y 0=1.75 -—-— \ 0.8
B “,h ] 0.8 &
06 7\A‘A .AQ. BK w 0.6
TR, q
o A”A"A>A-A”A,,A,A” 4 o]
0.4 | KXY R R EE SR 06| %
D R‘s._ 9 °
i 02 | D\ '0.""&..@_ i o
5 S T 3 8
s 0 ~ T OO0 B -0 S w 04 “
. =
R :4
-0.2 X, = B
N g 0.2
04 | = e i
[ A
0.6 = B—p_ g i
= 0
0 05 1 15 2 25 3 35 4 45 5 0 1 2 3 4 50 1 2 3 4 5
X X

(a) Mittag-Leffler function for z = —x¢ (b) The derivatives of E, 1(—x®) at some points using the

algorithm in Ref. (DIETHELM et al., 2005).

Figure 1: Mittag-Leffler function calculated using Algorithm 1. The open circles, triangles and
squares are the data from the Ref. (DIETHELM et al., 2005).

Finally, we used the algorithm presented in Ref. (DIETHELM et al., 2005) to calculate the
derivative of E, g(z). We tested this algorithm, which seems to give good results, omitted for
brevity. This algorithm uses the values of E,g(z) calculated through Algorithm 1. For this
reason, Algorithm 1 must be rigorously tested. Besides small corrections in this algorithm, we also
performed numerical tests for the recurrence relations (10) and (11). They were confirmed with
the same precision reached for every point in Table 1. In Figures 1(a) and 1(b), we plot function
Eq1(—x®) for 0 < x <5, @ = 0.25,1,1.75, and the derivatives at some points. In Figure 1(a),
we compare our calculations with those obtained by Diethelm et al.(DIETHELM et al., 2005). We
reproduced their results with very good precision. However, in Figure 1(b), the derivatives for
values such that x > 1.4, with @ = 1, were not correct using the algorithm in Ref. (DIETHELM
et al., 2005). The reason is the value of p calculating the integrals K and P to obtain E, (z). As
mentioned before, in their original paper, Gorenflo et al.(GORENFLO; LOUTCHKO; LUCHKO,
2002) used p = (|z|+1)/2 in Eq. (21), which is not correct for satisfying the convergence condition.
This error propagated towards the revised algorithm in Ref. (DIETHELM et al., 2005). As we
suggested through Algorithm 1, the choice p = |z| + 1 satisfies the correct condition and gives a
good convergence in the calculation of E, ;(z), which implies the correct values of the derivatives
in Figure 1(b).
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5 Conclusion

We have tested the numerical algorithm suggested by Gorenflo ef al.(GORENFLO; LOUTCHKO;
LUCHKO, 2002) and revised by Diethelm er al.(DIETHELM et al., 2005). A small error in the
parameter p for calculating the integrals K and P to obtain E, g(z) was corrected and we tested
the algorithm again, obtaining more appropriate results for some analytical relations. In Ref.
(DIETHELM et al., 2005), the authors furnish a table with the coefficients of Padé approximates for
Ey1(=x%),0 < @ < 1 and x € [0.1,15]. This is an efficient way to deploy E, g(z), with a huge
computational gain for applications in engineering and physics, mainly if one wants to solve partial
differential equations through finite element mesh techniques. Nonetheless, these tables must be
revised once, for some values of x and «a, the wrong condition for calculating the integrals K and P
to obtain E, g (z) can cause different values from the correct ones. Indeed, these values may suffer
only small changes because most of the contribution for E, g(z) is due to the integral of K, which
is not affected severely by this mistake. We intend to test this table with Algorithm 1 in the future.
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