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Neural models for monitoring the 

transmembrane flux in the vinasse clarification 

process by crossflow microfiltration 
 

Modelos neurais para monitorar o fluxo transmembrana no 

processo de clarificação de vinhaça por microfiltração tan-

gencial 

 

Abstract 

Artificial Neural Networks (ANN) were used for estimating 

the transmembrane flux in a crossflow microfiltration pro-

cess with ceramic tubular membranes to clarify the vinasse. 

The prevision was accomplished through the training of 

ANN feedforward using the experimental database gener-

ated in the work of Trevisoli (2010). The results showed a 

good correlation between the estimated data and the exper-

imental data of transmembrane flux. For the microfiltration 

process with the membrane nominal pore size of 0.8 μm, 

the test subset presented maximum percentage error of 

5.21% and average percentage error of 1.62%. For the 

membrane nominal pore size of 1.2 μm, the test subset had 

maximum percentage error of 28.51% and average percent-

age error of 4.66%. Therefore, it is feasible to use the ANN 

technique to estimate future data, helping to study mem-

branes in microfiltration processes. 

Keywords: Neural models, Levenberg-Marquadt algo-

rithm, Microfiltration, Vinasse. 

 

Resumo 

Redes Neurais Artificiais (RNA) foram utilizadas para 

estimar o fluxo transmembrana em um processo de 

microfiltração tangencial com membranas tubulares 

cerâmicas para clarificação da vinhaça. A predição foi 

realizada através do treinamento de RNA feedforward 

utilizando o banco de dados experimental gerado no 

trabalho de Trevisoli (2010). Os resultados mostraram uma 

boa correlação entre os dados estimados e os dados 

experimentais de fluxo transmembrana. Para o processo de 

microfiltração com o tamanho nominal dos poros da 

membrana de 0,8 μm, o subconjunto de teste apresentou um 

erro percentual máximo de 5,21% e um erro percentual 

médio de 1,62%. Para o tamanho nominal do poro da 

membrana de 1,2 µm, subconjunto de teste teve erro 

percentual máximo de 28,51% e erro percentual médio de 

4,66%. Portanto, é viável o uso da técnica de RNA para 

estimar dados futuros, auxiliando no estudo de membranas 

em processos de microfiltração. 

Palavras-chave: Modelos neurais, algoritmo de Leven-

berg-Marquadt, microfiltração, vinhaça. 
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1 Introdução 
 

Vinasse is the residue from the production of alcohol and sugar with a high agricultural 

value as a fertilizer (UYEDA, 2009). In Brazil, a common practice for the problem of the des-

tination of vinasse is the application directly to the soil as a fertilizer and source of potassium. 

However, with the higher productivity of alcohol, consequently, of vinasse, the sugar and alco-

hol mills increased the application of the residue in the soil, which generated problems such as 

contamination of groundwater close to the surface and saturation of some nutrients such as 

potassium. Clarifying vinasse before disposal can reduce the harmful action on the soil. An 

alternative to the treatment of liquid waste is crossflow microfiltration, which can concentrate 

and retain unwanted substances (TREVISOLI, 2010).  

Crossflow membrane filtration technology (microfiltration, ultrafiltration and nanofil-

tration) has been researched and used widely in industry because it has a great potential for 

removing particles. During filtration processes, fouling is the main problem causing loss of 

productivity, because reduces equipment efficiency with permeate flux decline, which increases 

production cost by repetitive cleanings and can cause contamination problems due to the growth 

of microorganisms at the membrane surface. Therefore, an extensive study of the transport phe-

nomena is necessary to better understand the mass transfer mechanisms in this process.  Eval-

uating parameters related with the transport phenomena, often request complex mathematical 

equations with adjustable parameters that are difficult to determine experimentally and that the 

analytical solution cannot be obtained. In this context, Artificial Neural Network (ANN) has 

attracted attention as new approach for determining complex relationships between input and 

output variables on analysis of experimental data (FILLETTI; SILVA, 2015). 

ANN model has drawn attention over the past decades as a new approach to determining 

complex relation between many input and output variables. In previous studies, the ANN model 

has been demonstrated to perform better than the conventional modeling methods in addition 

besides it offers the advantage of being easy to use. ANN has attracted much interest in certain 

membrane processes because it has potential to describe highly non-linear behaviors, such as 

decreased flow or increased resistance under different conditions. 

A few works have been done with the application of ANN model in membrane cross-

flow filtration.  Razavi, Mortazavi and Mousavi (2004) applied neural networks for the dynamic 

simulation of permeate flux and total hydraulic resistance. The methodology was used to the 

case of milk concentration by crossflow ultrafiltration as a function of physicochemical condi-

tions (pH and fat per cent). The results were satisfactory with average error less than 1.06%. 

Curcio, Calabro and Iorio (2006) presented ANN methodology for the control of permeate flux 

decay, on the basis of the experimental results collected, during ultrafiltration of BSA solutions. 

Chen and Kim (2006) investigated the capability of a radial basis function neural network to 

predict long-term permeate flux decline in crossflow membrane filtration. They used transmem-

brane pressure and filtration time along with feed water parameters such as particle radius, so-

lution pH, and ionic strength were used as inputs to predict the permeate flux. The results ob-

served indicated that a single radial basis function neural network accurately predicted the per-

meate flux decline under various experimental conditions of colloidal membrane filtrations. 

Liu, Kim and Lee (2009) used ANN model to predict the performance of microfiltration sys-

tems for water treatment using a hollow fiber membrane module.  The effects of operating 

parameters on membrane performance were evaluated based on the comparison of transmem-

brane pressure (TMP) as a function of operating time. The ANN model used five input variables 

for predicting corresponding TMP. The modeling results indicated that there was an excellent 

agreement between the experimental data and predicted values. Liu et al (2014) developed an 

ANN model to model the turbulence promoter-assisted during crossflow microfiltration process 
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of particulate suspensions. Using the trained ANN model, the effects of microfiltration opera-

tion conditions on the flux improvement efficiency were studied, and the relative importance 

of each operation condition to the flux improvement efficiency was analyzed. Jokic et al (2020) 

analyzed a non-recurrent feed-forward ANN with one hidden layer for microfiltration modeling 

using Bacillus velezensis cultivation broth as the feed mixture. The results presented of appli-

cation of the ANN model for prediction of permeate flux during microfiltration of Bacillus 

velezensis cultivation broth were satisfactory. Authors as Chellam (2005), Curcio et al (2005), 

Delgrange et al (1998), Guadix et al (2010), Hilal, Ogunbiyi and Al-Abri (2008), Niemi, Bulsari 

and Palosaari (1995), Shahoo and Ray (2006), Shetty and Chellam (2003) and Silva and Flauz-

ino (2008) also worked with the applicability of ANN to describe membrane processes. 

Research group of the authors of this work used ANN to estimate the permeate flow of 

a beverage based on açai through the crossflow microfiltration process using two ceramic mem-

branes (PRONI; HANEDA; FILLETTI, 2020). The results provided by the ANN was very sat-

isfactory, which motivated to extend this study to other solutions. 

Therefore, the aim of this research work was the development of a neural model to pre-

dict the performance of microfiltration applied to clarify the vinasse originated from the pro-

cessing of sugarcane, with tubular ceramic membranes with nominal pore size of 0.8 μm (M08) 

and 1.2 μm (M12). The results were compared with those obtained by Trevisoli (2010). 

 

2 Neural network model 
 

The ANN developed in this work was implemented in the MATLAB R2018a Neural 

Networks Start Toolbox (NNSTART) library on an Intel (R) Core (TM) i7-3630QM computer 

with 2.40GHz and 6.0 GB of RAM with the Levenberg-Marquadt algorithm (HAGAN; 

MENHAJ, 1994). 

The experimental data set (TREVISOLI, 2010) used in the development of ANN was 

randomly divided into three subsets as follows: 70% of the data were used in ANN training, 

15% formed the validation subset and the remaining 15% constituted the test subset. For both 

models, 144 experimental data were used, which were divided into training, validation and test. 

 The ANN was multilayer perceptron of the type feedforward. To work with the 

membrane M08 data, ANN had a hidden layer with five neurons as shown in Figure 1 and the 

ANN for M12 had a hidden layer with six neurons. In order to obtain accurate results for the 

transmembrane flux, the number of neurons in each ANN was defined by trial and error.   

ANN received three characteristics from which they should extract information for their 

responses: Reynolds number, pressure (bar) and filtration time (min). The ANN output layer 

was composed of a neuron, which was responsible for estimating the transmembrane flux (L.h-

1m-2).  

The training process was interrupted with few epochs to avoid ANN from losing its 

generalization capacity caused by overtraining. When this happens, ANN memorizes the 

training subset instead of mapping the main aspects of it, generating little or no reproducibility 

of the results of the validation and test subsets. 
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Figure 1: ANN architecture used to estimate the permeate flux of the membrane M08.  

 

 

3 Results and discussion 
 

The proposed ANN for membrane M08 showed excellent convergence in its results. For 

the training subset, a maximum percentage error of 5.20% and an average percentage error of 

1.06% were obtained; for the validation subset, the maximum percentage error was 12.26%, 

with an average percentage error of 1.62%; for the test subset, the maximum percentage error 

was 5.21% and the average percentage error was 1.62%. Table 1 shows the permeate flux values 

estimated by ANN compared to the experimental values for the membrane M08 in the test 

subset, and the average percentage error calculated for each value obtained. 

 

Table 1: Comparison between the permeate flux values estimated by ANN and the ex-

perimental values for the membrane M08 in the test subset. 

 

Experimental values 
Values estimated 

by ANN 
Percentage error 

31.40 33.04 5.21% 

31.04 30.94 0.32% 

31.20 30.61 1.88% 

30.49 29.83 2.17% 

29.48 29.25 0.76% 

29.21 29.08 0.45% 

28.91 29.02 0.37% 

29.40 29.82 1.42% 

40.24 40.04 0.48% 

36.79 36.43 0.98% 

36.35 36.01 0.92% 
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31.70 31.65 0.17% 

39.69 40.68 2.48% 

37.80 37.45 0.91% 

37.61 36.96 1.73% 

36.08 36.54 1.26% 

35.83 36.47 1.77% 

36.16 36.19 0.08% 

40.73 42.61 4.62% 

39.91 39.03 2.20% 

37.31 38.14 2.23% 

41.33 42.68 3.26% 

Average percentage error 1.62% 

 

Figure 2 shows the good correlation between the experimental values and the values 

estimated by the ANN in which the abscissa axis represents the experimental values and the 

ordinates axis represents the results provided by the ANN. The good results are reinforced by 

the linear regression equations and by the correlation coefficients: y = 0.98x + 0.61 and                  

R = 0.99 (training subset), y = 0.89x + 3.93 and R = 0.96 (validation subset) and                                   

y = 1.04x − 1.38 and R = 0.99 (test subset).  

 

 
Figure 2: Permeate flux estimated by ANN versus experimental values for the training, 

validation and test sets of the membrane M08. 

 

 Figure 3 presents a comparison between permeate flux estimated by ANN (output) 

and experimental values (target) for the test subset of the membrane M08 for different Reynolds 

with pressure of 2 bar (Figure 3a) and 5 bar (Figure 3b). Note that, for both pressures, the output 

and target values practically coincide at all points that were experimentally collected during the 

microfiltration process. In this case, the Reynolds number values used were: 11500, 22500, 

33500. 

The performance of the ANN model for the membrane M08 can be seen in Figure 4, 

which shows that the training stage stopped at 66 epochs, with a mean squared error (MSE) of 
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approximately 0.25. The established stopping criterion was check validation, that is, the training 

is interrupted if the performance of the validation set deteriorates for 6 consecutive epochs. 

Thus, it is avoided excessive adjustment by ANN that could cause poor generalization perfor-

mance. The best performance of ANN was obtained with sigmoid transfer function in the hid-

den layer and with a linear transfer function in the output layer. 

 

 
 

 
 

Figure 3: Permeate flux estimated by ANN (output) and experimental values (target) 

for the test subset of the membrane M08 for different Reynolds:  

(a) 2 bar and (b) 5 bar. 
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Figure 4: ANN performance during training for membrane M08 data. 

 

The ANN developed for the membrane M12 also showed good generalization from the 

experimental data. In this case, the structure differs from the previous one, because it has six 

neurons in the hidden layer. This adjustment was necessary due to the difficulty of converging 

the solution during training. 

The maximum percentage error was 40.58% in the ANN training. However, it is worth 

noting that the transmembrane flux supplied to the ANN network was 4.34 L.h-1m-2, while the 

value estimated by ANN was 6.12 L.h-1m-2. As it is a small value, a small variation causes a 

considerable percentage error. In addition, the experimental value differs considerably from the 

other data of the training subset, configuring an outlier and, therefore, little representative as an 

ANN efficiency parameter. Furthermore, the average percentage error for this subset was 

3.11%, demonstrating considerable linearity between the experimental data and the data esti-

mated by the ANN. For the validation subset, the maximum percentage error was 30.02% and 

the average percentage error was 4.91%. For the subset of tests, ANN presented a maximum 

percentage error of 28.51% and an average percentage error of 4.66%.  

Table 2 shows the permeate flux values estimated by ANN compared to the experi-

mental values for the membrane M012 in the test subset, and the average percentage error cal-

culated for each value obtained. 

 

Table 2: Comparison between the permeate flux values estimated by ANN and the experi-

mental values for the membrane M12 in the test subset. 

 

Experimental 

values 

Values estimated 

by ANN 
Percentage error 

31.31 30.27 3.31% 

30.30 31.14 2.76% 

35.83 34.76 2.99% 

31.34 31.84 1.61% 



 

 

SILVA, A. A. B. da; SILVA, J. M. da; FILLETTI, É. R. Neural models for monitoring the transmembrane flux in the vinasse clarification process by crossflow 

microfiltration. C.Q.D.– Revista Eletrônica Paulista de Matemática, Bauru, v. 21, p. 38-49, dez. 2021. Edição Iniciação Científica. 

DOI: 10.21167/cqdvol21ic202123169664aabsjmserf3849         Disponível em: http://www.fc.unesp.br/departamentos/matematica/revista-cqd/ 

45 

31.48 31.47 0.02% 

15.33 16.12 5.15% 

33.83 30.21 10.70% 

27.40 27.54 0.50% 

30.77 30.75 0.06% 

28.19 30.17 7.02% 

11.14 7.96 28.51% 

11.66 12.21 4.69% 

11.91 12.59 5.72% 

12.37 12.14 1.82% 

23.35 21.20 9.22% 

21.21 20.46 3.52% 

19.32 19.73 2.10% 

19.76 19.57 0.98% 

19.43 18.65 4.00% 

24.85 25.42 2.28% 

24.01 25.05 4.33% 

28.93 28.54 1.35% 

Average percentage error 4.66% 

 

 

Figure 5 shows the good correlation between the experimental values and the values 

estimated by the ANN developed for the M12. The linear regression equations and the 

correlation coefficients were: y = 0.96x + 0.97 and R = 0.99 (training subset), y = 1.06x – 1.32 

and R = 0.97 (validation subset) and y = 0.99x − 0.02 and R = 0.98 (test subset).   

 

 
 

Figure 5: Permeate flux estimated by ANN versus experimental values for the training, 

validation and test sets of the membrane M12. 
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It is noted that the relative percentage errors were greater in the case of the membrane 

M12 when compared to the values of the membrane M08. It is believed that this happened 

because the filtrations in both membranes happened differently, because according of the 

Trevisoli (2010) work, it was observed that for the membrane M12 the permeation rate resulting 

was more susceptible to tangential velocity and transmembrane pressure variations and the 

transmembrane flux was unstable with variations during the 60 minutes of the process. This is 

due to the pore obstruction phenomena not having stabilized during the process. The membrane 

M08 showed the lowest resistance results and was less affected by the change in tangential 

velocity when compared to the membrane M12 under the same conditions.  

Thus, it is clear that the crossflow microfiltration process using the membrane M12 

generated an irregular experimental database with respect to permeate flows, due to the unstable 

process. This hindered the training of the ANN, which estimated some values of the 

transmembrane flux with greater errors than in the case of M08. 

 One can see from Figure 6 a comparison between permeate flux estimated by ANN 

(output) and experimental values (target) for the test subset of the membrane M12 for different 

Reynolds with pressure of 2 bar (Figure 6a) and 5 bar (Figure 6b). Again, it can be noted that 

the output and target values coincide, which helps to confirm the good results provided by ANN 

to estimate the permeate flux in the vinasse microfiltration process. 

The training stage was interrupted in 22 epochs, with an MSE of approximately 1.11, as 

it is shown in Figure 7. In this case, the same stopping criterion was used for training, that is, 

check validation. Other transfer functions were tested, but the best result was also a sigmoid 

transfer function in the hidden layer and a transfer function linear in the output layer. 
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Figure 6: Permeate flux estimated by ANN (output)  and experimental values (target) for the 

test subset of the membrane M012 for different Reynolds: (a) 2 bar and (b) 5 bar. 

 

 

 

 
Figure 7: ANN performance during training for M012 membrane data. 

 

4 Conclusions  
 

 In this work of numerical investigation, two neural models, which were based on the 

experimental database generated in the work of Trevisoli (2010), were developed with the Le-

venberg-Marquadt algorithm to estimate the transmembrane flow in a crossflow microfiltration 
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process with ceramic tubular membranes for clarification of vinasse. The input variables sup-

plied to ANN were Reynolds number, pressure and filtration time. 

The two ANN models had good generalization of their experimental data, despite the 

different fluid-dynamic conditions in which the experiments were carried out (TREVISOLI, 

2010). A correlation in both situations was satisfactory, demonstrating that the methodology is 

promising and suitable for the solution of this problem and can be used as a tool to estimate the 

transmembrane flux. Once again, ANN have demonstrated the ability to process information 

with high speed and accuracy, showing itself able to simulate the transmembrane flux data 

from the vinasse of the crossflow microfiltration process. This can contribute to the 

experimental research in the area, as it was found that this computational tool has the potential 

to be used in helping to define which membrane is most suitable for the process, thus saving 

costs with simulations. Therefore, it can be concluded that Artificial Neural Networks are 

capable of estimating transmembrane flux values for different operational conditions in the 

crossflow microfiltration process. 

Can stand out that, due to few experimental data, the ANN tests were performed for two 

types of ceramic membranes. Thus, it is suggested as future work to analyze ANN for other 

types of membranes, to have greater ANN versatility. 
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