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1 Introduction

In the present paper, we consider the system with nonlinear impulsive evolution fractional
differential equation, given by

CDG,u() + Au(t) = f(t, u(®)), t € Jo =[0,+0), a € (1,2),
Au(ty) = I(u(ty)), Au'(ty) =1(u'(tx)), k € N, 1 # 1y, (P)
u(0) = xo, u'(0) = xy,

where CD8+(-) is the Caputo fractional derivative of order @ € (1,2), u : Joo — E, Jo = [0, +0)
e (E,||-]|) is a Banach space. The operator A : D(A) c E — E is sectorial of type (M, 0, a, ),
f € ClUxs X EE), Au|i=,= u(t;;) — u(t;) is the jump of the function u at the point 75 that
represents the impulse function / : E — E, where u(t,’;) and u(z;)) represent the limits on the
right and on the left sides of the u(¢) in ¢ = #4, respectively; analogue to Au'|;—;, € xo,x1 € E.

Also consider, 0 < t1 < fh < --- < 1, -+, With 1, 0, oo, a partition on J., and define the
ranges: J., = Jo\{t1,t2, ... tm,...}, Jo =[0,¢;] and Ji = (¢, tx+1] (kK € IN). Also, let A; be
the smallest positive real eigenvalue of the linear operator A and e; € D(A) the positive eigenvector
corresponding to 4.

Currently, fractional calculus is well solidified with numerous definitions of fractional deriva-
tives and fractional integrals. These fundamental concepts of fractional calculus are being used
in many other areas, producing numerous results (SOUSA; OLIVEIRA, 2018a, 2019a, 2019b;
SOUSA; FREDERICO; OLIVEIRA, 2020). An important consequence that the fractional calcu-
lus provides, is the investigation of properties regarding fractional differential equations, the main
point of this work. There are already a large number of works published in this area of fractional
differential equations, as it has aroused interest in the scientific community (CHEN; ZHANG; LI,
2019; EIDELMAN; KOCHUBEI, 2004; SOUSA; JARAD; ABDELJAWAD, 2021). Researchers
justify that working with fractional operators (derivatives and integrals) produce better results when
compared to classical operators (full order), in particular, when it comes to applications (NIKAN;
AVAZZADEH; MACHADO, 2020; SOUSA; OLIVEIRA; MAGNA, 2017; SOUSA, 2018). There
is still a vast field to be explored, as the theory has been built in different directions of the fractional
differential equation theory, involving sectorial and quasi-sectorial operators (SOUSA; OLIVEIRA;
MAGNA, 2017; SOUSA, 2018; WANG; FECKAN; ZHOU, 2013; WANG; SHU, 2015). Further-
more, there are still many questions, which when answered will enrich the theory. Thus, we highlight
some relevant works involving sectorial and quasi-sectorial operators (CHEN; ZHANG:; LI, 2020;
DING; AHMAD, 2016; WANG; CHEN; XIAO, 2012; YANG; LIANG, 2013; ZHANG; LIANG,
2018).

In 2012, Shu and Wang (SHU; WANG, 2012) investigated the existence and uniqueness of a
mild solution for a system with a semilinear fractional integrodifferential equation in a Banach
space, using the Krasnoselskii theorem, the Arzela-Ascoli theorem and the theorem of fixed point.
In 2013, Yang and Liang (YANG; LIANG, 2013) investigated positive solutions to the Cauchy
problem of evolution fractional equations via Caputo fractional derivative in Banach spaces, using
fixed-point theorems and semigroup analytic theory. Still in 2013, Wang et al.(WANG; FECKAN;
ZHOU, 2013) investigated the existence of piecewise continuous mild solutions and applications
of fractional impulsive parabolic control in a study on optimal control for nonlinear impulsive
evolutionary fractional equations.

In 2015 Wang and Shu (WANG SHU 2015) 1nvest1gated the existence of positive m11d solutions
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fixed point theorem and the theorem of Krasnoselskii fixed point. See also work by Ding and
Ahmad (DING; AHMAD, 2016). See to (SHAH et al., 2018; CHEN; LI, 2010; CHEN; ZHANG;
LI, 2020; RAMOS; SOUSA; OLIVEIRA, 2022; SHU; WANG, 2012; SOUSA; BENCHOHRA;
N’GUEREKATA, 2020; SOUSA; OLIVEIRA, 2018b) and the references therein.

Motivated by the works discussed above and with the purpose of providing new results in order
to significantly contribute to the area of fractional differential equations, we will now present in
detail the main objectives obtained in this paper. So we have:

1. First, we present a new class of fractional differential equations with impulses and order
1 < @ < 2, in addition to the respective class of mild solutions via resolvent operators.

2. Wediscuss the necessary and sufficient conditions for the existence of e-positive mild solutions,
and we resort to the theory of Kuratowski measure of noncompactness, Cauchy criterion and
Gronwall inequality.

The rest of the article is divided into: Section 2, which presents some essential concepts and
results for the discussion of the main result. In Section 3, we investigate the existence of e-positive
mild solutions via Kuratowski measure of noncompactness and Gronwall inequality.

2 Preliminaries

We present some fundamental concepts and results that will be useful.
Consider the Banach space (E, ||-||), the interval J = [a,b] € R and n € IN. The space of
continuous functions and its usual norm are given, respectively by

CUJ,E):={f:J— E; f:continuous} and | f]|c :=sup|f(®).
teJ

The space of the continuously differentiable n-times functions and its usual norm are given,
respectively, by

C"JLE):={f:J—>E; f"eCU,E)} and |fllcr:=sup|fP@).

teJ
Note that the spaces defined above are Banach spaces. Now consider, the real interval Jo, = [0, o).

The space of continuous functions by parts given by

PC(Jo,E) i= { u:Jo — E; u(t) : continuous in ¢ # i, continuous left },

in t = t; and there is the limit on the right, u(t,’;), Vk € N

equipped with the norm ||u|| o = sup {||u(?)||; ¢ € J} is a Banach space.

Definition 2.1 (Cone) Let E be a real Banach space. A non-empty, closed, and convex subset
E* C E is said to be a cone if it satisfies the following conditions:

(@) Ifxe Etand A > 0, then Ax € E*.

(ii) Ifx €e E* and —x € E™, then x = (.
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Every cone E* C E induces an order in E givenby: x <y & y—x € E*.
Let J = [a, b] C R be an interval with —o0 < a < b < . The Riemann-Liouville fractional
integral on the left side of a function f in J of order @ > 0 is defined by

1 X
L4 f(x) = mj -0 f(ndt, x> a. (1)

Analogously, we define the corresponding version on the right side.

On the other hand, let » € IN and J = [a, b] C R be an interval such that —c0o < a < b <
Also consider the functions f € Cj B(J ; R). The Caputo fractional derivative on the left side of
f of order @ € (n — 1,n) and type 8 € [0, 1] is defined as (KILBAS; SRIVASTAVA; TRUJILLO,
2006; SOUSA; OLIVEIRA, 2018a)

CIDZ+f<x>=Ia":“(d) fx) = I(x )y f M. 2)

Analogously, we define the corresponding version on the right.

For details on how to obtain other particular cases for derivatives and fractional integrals, we
suggest the work (SOUSA; OLIVEIRA, 2018a). Next, we will present two fundamental results, the
Theorem 2.2 and the Lemma 2.3. The proof can be found in the paper (SOUSA; OLIVEIRA, 2019).

Theorem 2.2 (SOUSA; OLIVEIRA,2019) Let u and v be two integrable functions and g continuous,
with domain J = [a, b]. Letyy € C'(J) be an increasing function such that y'(t) # 0, Vt € J. suppose
that

(1) u and v are non-negative,

(2) g is non-negative and non-descending.

If

u) < v+ g0 | W@ -9@)  uwdr, 3)

then

)t o
u(t) < v(r) + Z leWla)] ¢(T)(¢(t)—¢(r)) v(r)dr. )

atm Tk

Lemma 2.3 (SOUSA; OLIVEIRA, 2019) Under the hypothesis of Theorem 2.2, let v be a non-
descending function on J = [a, b]. So we have

u(t) < VO, (sor@|vm -v@]’), Ve,

k

t
where [, (1) = ﬁ with R(a) > 0, is the one-parameter Mittag-Leffler function.
k=0

Definition 2.4 (SHU; WANG, 2012; SHU; SHI, 2016) Let A be a densely defined closed linear
operator on a Banach space E. The bounded set {S,(t); t > 0} is considered a a-resolvent family
generated by A if the following conditions are satisfied:

(a) Sq(-) is strongly continuous in Ry and S,(0) = I,
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(b) Sa(t)D(A) € D(A) and ASy(t)x = So(t)Ax for all x € D(A), t > 0;
(c) Forallx € D(A)andt > 0, So(t)x = x + 1]'So(1)Ax.

Definition 2.5 (SHU; WANG, 2012; SHU; SHI, 2016) A closed linear operator A : D(A) C X — X
is considered a sectorial operator of type (M, 0, a, ) if there is 0 < 0 < Z, M > 0 and u € R such
as

1. the a-resolvent of A exists outside the sector pu+ Sy ={u+ 1%, A € C, |arg(—1%)|< 6},

2. and, satisfy the estimate ||(1%1 — A)7!||<

|/1“—,u|’ /1“¢,u+Sg.

If A is a sectorial operator of type (M, 6, a, u), then it is not difficult to see that A is the
infinitesimal generator of a a-resolvent family of the solution operators S,(-), To(-) € Ky(), in a
Banach space, (SOUSA; BENCHOHRA ; N°'GUEREKATA, 2020; SOUSA; OLIVEIRA; MAGNA,
2017).

In order to obtain the existence of a e-positive mild solution of the system (P), we present the
concept of Kuratowski measure of noncompactness and some important results of it.

Definition 2.6 (Kuratowski measure of noncompactness) (WANG; ZHOU; FECKAN, 2013) Let
B be a bounded set in a Banach space E and let 6(X) be the diameter of a set X. The Kuratowski
measure of noncompactness () is given by,

u(B) = inf {8 >0; B= CJB,- eo(B)) <e, Vie]l. .m]} . &)
i=1

The Kuratowski measure of noncompactness guarantees that every bounded set B admits finite
coverage, i.e., B can be covered by a finite number of sets with a diameter not greater than £ > 0.

Lemm:il 2.7 (WANG; ZHOU; FECKAN, 2013) Let S and T be bounded sets in a Banach space
E, let S be the closing of S, co(S) the convex hull of S and a a real number. So the measure of
noncompactness has the following properties

(1) u(S)=0 = S is compact;

2) ScT = S <@,

(3) u(S) = u(S) = u@o(S));

4) u(aS) = la| u(S);

5) u(S+T) < u(S)+ u(T), where S+T ={x+y, x€ S,y eT};
(6) u(SUT)=max{u(S), w1}

(7) u(ixyuS)=u(S), VxeE, 0#ScCE;

For the next lemmas, consider the interval J = [0, ] and the Banach space C(J, E), then for any
B c C(J,E) and for all ¢ € J, we define the sets

B(t) :={u(t); ue B} CE and [: B(s)ds := { [: u(s)ds; u € B} .
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Lemma 2.8 (WANG; ZHOU; FECKAN, 2013) Let B ¢ C(J;E) be a bounded set, then B(t) is
bounded in E and
u(B(t)) < u(B), forallt € J.

Lemma 2.9 (WANG; ZHOU; FECKAN, 2013) Let B ¢ C(J, E) be bounded and equicontinuous,
then u(B(t)) is continuous in J,

t t
(B = sup {,u(B(t)); te J} and 4 (J B(s)ds) < J ,u(B(s))ds
0 0
Lemma 2.10 (WANG; ZHOU: FECKAN, 2013) Let J = [a,b], B c C(J; E) be bounded and

equicontinuous, then co(B) C C(J; E) is also bounded and equicontinuous.

Lemma 2.11 (WANG; ZHOU; FECKAN, 2013) Let {u,},. | be a sequence of Bochner-integrable
functions, from J = [a, b] in E, with ||u,(t)||< m(t), for almost everyt € J and every n > 1, where

m € L(J; R,), then the function ®(t) = ,Lc({un(t)}n=1) € L(J;R,) and satisfies

u ({I u,(s)ds; n € ]N}) < 2J D(s)ds. (6)

Lemma 2.12 (WANG; ZHOU; FECKAN, 2013) Let B be bounded, then for every € > 0, there is a
sequence {u,},’ | C B, such that

u(B) < ﬂ({un},‘i":l) +&

3 Existence of e-positive mild solution

We investigate the existence of e-positive mild solutions for an initial value problem with non-
linear impulsive evolution fractional differential equation in a Banach space, through the Gronwall
inequality, Cauchy criterion and the noncompactness measure by Kuratowski (SOUSA; OLIVEIRA,
2019; WANG; ZHOU; FECKAN, 2013).

Definition 3.1 (Mild solution) (SHU; WANG, 2012; SHU; SHU; XU, 2019; SHU; SHI, 2016) An
abstract function u € PC(Jw, E) is a mild solution to the system (P) if it satisfies the following
integral equation

t k k
u(t) = Sa<r>xo+1<a<r>x1+j To(1=5)f (s, u()ds+Sa() >, 3" W) +Ko (1) D K3 )1 (1)),
0 l=1 l=1

with Sq4(+), Ko(+) and T, (-) given by

= ay _ S (Ata)k _ -1 ay _ qa—1 - (Ata)k
Sa(t) = Eq,1(A1%) = kZ:g Fisan To®=1""EaaAr’) =1 g s ol
and
K, (1) =tE (Ata)=ti (A1)
® @2 ZITQ2+ak)

Remembering that, S;l ()and K, () denote the inverse of the solution operators S, (-) and K, (),
respectively, att = t;, i = 1,2,3,---,m. Also, if there is e > 0 and o > 0, so that u(t) > oe for
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Let (E,||-|]|) be a Banach space, A : D(A) ¢ E — E a closed linear operator and —A the
infinitesimal generator of the a-resolvent families {S(z); ¢ > 0}, {K(7); > 0} and {T'(r); 7 > O}.
So there are M > 0 and 6 > 0 such that (WANG; ZHOU; FECKAN, 2013; WANG; CHEN; XIAO,
2012)

1Se@llc < Me®,  ||Ke@llc < Me®  and  ||T,(0)|lc < Me®, 13> 0.

Theorem 3.2 Let (E, ||-||) be a Banach space with partial order “<”, whose positive cone E™ is
normal, and —A is the infinitesimal generator of the positive a-resolvent families {S,(t); t > 0},
{Ky(t); t = 0} and {T,(t); t > 0}. For a constant o > 0 and t € J, let xo > oey and
f(t,0ey) = Ayoey. If the nonlinearity of f € C(J X E*, E) satisfies the following conditions:

(H)) For t € J» and x € E*, there are functions a and b € C(J, EY), such that || f(t,x)||<
a(®)||x[|+b().

(Hy) For every R > 0 and T > 0, there is C = C(R,T) > 0, such that f(t,x;) — f(t,x1) =
—C - (xp —x1), forallt € [0,T] and for 0 < x1 < x, with ||x1]], ||x2||< R.

(H3) Forevery R > 0andT > O, thereis L = L(R,T) > 0, such that every monotonous increasing
sequence D = {x,} ¢ E* 0 B(0, R) satisfy ,u(f(t, D)) < Lu(D), VYtel0,T].

So the system (P) have e-positive mild solution in J.

Proof 3.3 (I) Global existence of e-positive mild solutions in the interval Jo = [0, t1]. Note that the
system (P) is equivalent to the system (7) with the evolution fractional equation without impulse in
E,

D u(t) + Au(t) = f(t,u(t)), € Jo, o
u(0)=x9, u'(0)=x;.
Now, we subdivide this first part into two steps:
(A) The local existence of mild solutions for the system (7) in Jo = [0, t1].
For every ty > 0 and xo, x| € E, the system (8) with evolution fractional equation
Dy u(t) + Au(r) = f(t,ut)), 1> 1o, ®
u(to) = xo, u'(f9) = x1,

admits an e-positive mild solution em I = [to, to + hy,], where hy, € (0, 1) will be defined later.
Consider the interval I, = [0, ty + 1] and write:

(i) The constants
_ 2—-a . Y 2—-a .
My, = sup {(t = 10)* " ISa@)l; ¢ € L.} and My, = sup {(t = 1) | Ko @)l; # € L.}
M, = sup {(t = 10)* T @)l; 1 € L} and Riy = (Myy + Mi)(|Ixoll+1) + oer + My |1x: .
(i) Let a and b be the functions in the condition (Hy), then

a;, =maxa(t) and b, =maxb(t).
tel, tel,
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(iii) Let the constants in the conditions (Hy) and (H3), respectively,

C=C(Ry,to+1) and L = L(Ry,t0+1).

Adding the portion Cu(t) on both sides of the equation in the system (8), we can rewrite it as

{CID%Jru(t) +(A+Chu(t) = f(t,u(®)) + Cu(t), t>ty, ©)

u(to) = xo, u'(ty) = xi.

Consider the operators Sa(t) = e C18,(1), Ko(t) = e CTK o (1) and Ty(t) = e CIT, (1) belonging,
respectively, to positive a-resolvent families {S(t); t > 0}, {K(t); t > 0} and {T(¢)); t > 0}, all
generated by —(A + CI). Define the application A as

(Au)(t) = So(t — to)xo + Ko (t — to)x1 + J T, (1 —5) [ f(s,u(s)) + Cu(s)|ds, tel. (10)

Note that the function A : C(I,E*) — C(I,E) is continuous and increasing, because f is
continuous and because of the condition (Hj). Furthermore, a fixed point of A is also a solution of
the system (9) in 1.

Define the set Q, given by

Q= {u € C(LEY); llu®llc < Ry, u(t) > oey, t € I}.

Then, Q c C(I, E*) is non-empty, bounded, convex and closed. Let hy,, such that

([lxol[+De }
’ (at() + C)RIO + bl()

(hsy)" < min {1
Then by Eq.(10) and by the condition (Hy), for eachu € Q and t € I, yields

[(Aw)®|| =

S.(f — to)xo + Kot — 1o)X + J Tt - 5) [ F(s,uls)) + Cu(s)] ds

to

t

< [1Sa(t = t)l[Ixoll+ | Kalz — 1) ||x1||+J

fo

Tult = )| I/ (s, u(s) + Cuts)l| ds

t
< Mgl 4 M et 143, | sy + OOy, + iy | f (t - 5)ds.
)

Above, we used the fact that (t — s)>®

Ta(t - s)“ < M,O, and as (t — t,) < hy,, follows

(t = t9)*

(AW)D]| < My llxol1+M || |11 1+, [(a,o +O)R, + bto]
[(a, + O)Ryy + b1 (|lxoll+Da

@ [(as, + C)Ryy + by ]
< [Myy + My (Ixoll+1) + Myl [1xi | < Ry,

< My llxoll+ Mg [[|1x1114+M

Now, let vo(t) = oey, Yt € I, from this it follows that vy € Q. Thus

= <
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Since §a(t), Ea(t) and fa(t) are positive a-resolvent operators and A is an increasing operator,
so from Eq.(10), yields

aer = vo(t) = So(t — to)vo(to) + Kol — t0)volto) + J To(t — $)p(s)ds

< Salt = t0)x0 + Ko (t — to)vo(to) + I

1o

Tt - 5) [f(s, cer)+Coe|ds =
< (A(oe)(@).
Note that oe; < u(t) (Vt € I), then
cer < (A@en) o < A, rel.

With this, A : Q — Q is continuous and increasing. We will show that the set A(Q) is a family
of equicontinuous functions in C(I, E*), using the monotonous iterative method.
Let vy = oey € Q and define the sequence {v,} by iteration

vp=Av,_1, n=1,2,... (12)
Since A is an increasing operator and v = Avg > v(, we have the monotonous sequence,
VoS VISV K Sy, € (13)

Therefore, {v,} = {Av,—1} € A(Q) C Q is bounded and equicontinuous.

Let B = {v,; n € N} and By = {v,—1; n € IN}, then By = B U {vo} and by noncompactness
measurement property, we have u(B(t)) = u(A(By)(t)) fort € I.

Substituting A(Bo)(t), defined by Eq.(10), yields

u(B@) =pu ({J Talt — 5) [f(s, Vi-1(8)) + Cvn-1(S)]ds; ne IN}) ,

since, by item (3) of the Lemma 2.7, we have to ,u(ga(t — to)xo + Ea(t - to)xl) = 0.
Using the Lemma 2.11, yields

t

u(B(1)) < 2[ i ({Tatt = 9| 5 var (5D + Cvaa ()]s m e N} ) ds

< 2] 1Tt — )]l ({f(s,vn_l(s)) +Cvpi(s) n e 1N}) ds.
As (t —5)>@ ||7~“a(t —9)I< M,O and using the condition (H3), for any t € I, yields
,u(B(t)) < ZM’OI (1 — 5)*2 [L/J(Bo(s)) + C/J(Bo(s))] ds

< ZM,O(L + C)J (t — $)* 2 (Bo(s))ds
to

<0+ ZM,O(L + C)J (t— s)"_z,u(Bo(s))ds.
)
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By the generalized inequality of Gronwall for fractional integral, Lemma 2.3, yields
/J(B(t)) <O, (2M(L + OT(a)( - s)“) = 0.

Hence, u(B(t)) = 0 for t € I. The Lemma 2.9 says that u(B) = max;c; u(B(t)) = 0, that is,
{vn} is relatively compact in C(I, E¥). Therefore, there is a subsequence {v,, } C {v,} such that

k—o0

Vi, — u* € Q. Combining this with the sequence in (13) and the normality of the cone E7, it is

easy to see that v, 2%, w*. Make n — oo in Eq.(12). From the continuity of the operator A, we
have that u* = Au™ is a fixed point.

Therefore, u* € Q c C(I, E") is a e-positive mild solution of Eq.(8).
(B) The global existence of mild solutions for the system (7) in Jy = [0, t1].

We saw in item (A) that the system (7) has an e-positive mild solution uy € C([0, hol, E*)
expressed by

(1) = Sa(t)xo + Ko(D)x1 + I Tolt = )| £, u0() + Cuo(s) | ds.
0

By the extension theorem, (see (PAZY, 2012)), ug can be extended to a mild solution of the
system (7), which is also denoted by ug € C([0,T), E*), whose existence interval is [0, T).
Now, we prove that T > t;. So consider a = max;cjo,r+1]a(t), b = max;ep0.1r+1) b(), M =

sup{ll(t TS, )| t € [0, T + 1]}, M = sup{||(t T2k, () t € [0, T + 1]}, and

M) = sup {lI(e = TP T, )l 1 € [0, T +11}.
Suppose T < t and plotting the norm of the solution uy and using the condition (Hy), yields

ol < Myl BTl [ 0= 972 [ 765,009 + Cuato) s

t t
< M1||xo||+M1||X1||+MlbI (t = )" 2ds + V1@ + C>J (t = )2 lluo(s)ds
0 0

(01

— — T _— _ ! B
< Mol BT b 43115+ 311+ ©) [ (0= 572l
0

By the Gronwall generalized inequality for fractional integral, Corollary 2.3, we have

— 7" 3
a0l < (sl 715 ) (1@ + o)
__T@
< (M1||x0||+M1b —) EQ(M1(5+ C)F(a)T) = M. (14)
a
Define the constant
Ny := sup{llf(t,x)ll; tef0, T+1]e|x|I< Mz}. (15)

As §a(t) and K, (1) are continuous in the operator’s norm fort > 0, forany 0 < 1 < 17 < T, we
consider the following functions

o(2) = ST + Kol + JO To(rs = )( £, uo(s)) + Cuo(s)) ds. (16)

uo() = Sa(rwo + Kol + JO Tory = 9)( f(s. uo(s)) + Cuo(s) ) ds. (17)
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Subtracting Eq.(17) from Eq.(16), yields

™

uo(12) — (1) = Sa(T2)x0 — Sa(T1)x0 + Ko(t2)x1 — Ko(T1)x1 + J

T2 = 9)| 5, 10(5)) + Cuots) | ds

_ I (11 — 5) [ F(s, uo(s)) + Cuo(s)]ds.

0

Rearranging integrals with respect to integration limits, yields
luo(r2) —uo(tDll < ISa(m2)x0 = Sa(r)xoll + | Ka(r2)x1 — Ka(rn)x1]|

. L 1 Tors = 5) = To(r1 = ILF (s, 10(5)) + Cuto(s)llds

+j 1T (22 = )1LFGs. uo(s)) + Cato(s)ds.

T1

Changing the variable, s to T\ — s, in the first integral and using the Eq.(15), the Eq.(14) and the
constant M 1, yields

luo(m2) = uo(e)ll < 1Sa(m2)x0 = Sa(T)x0ll + |Ka(t2)x1 — Ko(T1)x1]|

T] — ~
+(No + CMz)J | Te(m2 — 71 +5) = To(s)|lds
+M (N + CMQ)I (15 — 5)*2ds.
it

From this it follows that

~ ~ ~ ~ — ™ —-T1)%
luo(T2) — uo(t1)| < |ISe(12)x0 = So(T1)x0l| + || Ko (12)x1 — Ko (T1)x1 ||[+M1(No + CMz)g

T — —
+(No + CM>) I | To (T2 — 71 + 5) — To(s)||ds.
0

Whenti - T~ ety — T, yields
~ ~ 71,y —T~
1S (2)x0 — Sk (11)x0]|——— 0,

= = 71,71~
IK;(m2)x1 — K (T1)x1||[——— 0,

(12 —1)Y 11,0>T"
0,

T1,T0—T~

@
Ig”fa*(Tz — 11 +5) = Ti(s)||ds ——— 0.

Thus ||ug(t2) — ug(t1)|| = 0. Using the Cauchy criterion, there is x € E* such that lil%l uo(t) = Xx.
t—1~

We consider the system with evolution fractional equation and without impulse in E, given by

N (18)

‘D, u(®) +(A+ Chu(t) = f(t,u(t)) + Cu(t), t>T,
u(M)y=xand u'(T) =Y.

Using the (A) part, the system (18) has an e-positive mild solution v in [T, T + hr]. Let

_ { uo(t), t€[0,7),
u(t) =
v(t), telT, T+ hr].

p AN
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It is easy to see that u(t) is an e-positive mild solution of the system (7) in [0, T + hr). Therefore,
u(t) is an extension of uo(t), this is a contradiction. Thus, T > t|, that is, the global e-positive mild
solution uy(t) of the system (7) exists in Jo, which is also an e-positive mild solution of the system
(P) in Jy.

(II) In this second part, we will prove the global existence of e-positive mild solutions in the interval
Joo.

~ Initially, we will prove that the system (P) has a global e-positive mild solution in J, = (1, 1].
We consider the system with evolution fractional equation without impulse in J;

DY u() + (A + CDu(t) = f(t,u() + Cu(r), t€J),
u(ry) = uo(t1) + I(uo(11)), (19)
w'(t7) = ug(tr) + 1ug(11)).

Clearly, a global e-positive mild solution of the system (19) in Jy is also an e-positive mild
solution of the system (P) in J1. From the proof of item (1), for t € Jo = [0, t1], we have

wo() = S (1o + Ko (1)1 + I Tt - s) [ F(s, us)) + Cu(s)] ds. (20)
0

By an argument similar to the proof of (1), the system (19) has an e-positive mild solution
uy € C(Jy, ET), with Ji = (t1, 1), given by

t
i (1) = So(0)00 + Koy (1) + I Tt —s) [ F(s, uls)) + Cu(s)]ds. Q1)
0
By the impulsive condition and Eq.(20) and Eq.(21), yields

00 = x0+ 55 (11) 1 (o1

B =x1+ Ky () 1 (o). @
Then, for t € Ji = (1, 12), we have
11(7) = Sot)xo + Ko()xy + J; Tolt - 5) [ F(s,u(s) + Cu(s)]ds +
15,083 (1) 1(u0(r1)) + K OK: (1) 1(u5(r1)). (23)
Now consider J, = (t2, 3] and uz € C(J, E*), follow
(1) = So(1)81 + Koy + J; Tolt - 5) [ F(s,u(s) + Cu(s)] ds. (24)
By the impulsive condition and Eq.(23) and Eq.(24), vields
01 = x0+ 55 (10) 1 (o(e)) + 55 (12) 1 (11 (12)). o3

G =x1 + K\(t) 1(u6(z1)) + K1) I(M'I(zz)).
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So, fort € Jr = (t2,13], we have
1r(1) = S, (1)0; + K\ (1)0) + J Tt - 5) [ F(s, u(s)) + Cu(s)]ds +
0
+5a 05 00 1{uo(r)) + Sa0531 1) 1112 +

R (OR (0) 1 (s (11)) + RaOR (1) 1 (1 12)).
Suppose that, for t € Ji_1 (k = 4,5,...), the system (P) has an e-positive mild solution
up—1 € C(Jy-1,E*) (k =4,5,...). So, fort € Jy (k =3,4,...), the system with evolution fractional
equation without impulse in E
C]I)g+u(t) +(A+Chu(t) = f(t,u(®))+ Cu(t), tely, k=3,4,...
u(ty) = ug—1(tx) + I(ug-1(tx)), (26)
w(ty) = uj_ (te) + 1), (1)),

has e-positive mild solution u; € C(Ji, E*), expressed by

) = a0+ Rol0icr 4 | Tota = 9) 5.+ Cuto | s

173

= Sal0) [Xo #5510 1{uo(t) + 531 02) 1 (w1 (1)) +--- + S';l(rk)I(uk_l(tk))]
+ K1) [xl + B ) 1 (0] + K3 1) (0] +---+ k‘;l(tk)l(u;_l(tk))]

t ]
+ J Ta(t -5) [f(s, u(s)) + Cu(s)|ds

Ik

~t

Up(t) = Sy (Do + Koy(Dxy + | Tot = 5) [ F(s, u(s)) + Cu(s)]ds
0

+8(1) D Sy NI 1 (1) + K(t) D K a)I;_y (1)) 27)
j=1 j=1

Now, we define a u function as

uo(t), te€Jo,
ui(t), tely,

u(t) = (28)

up(t), teJy(k=2,3,...),

It is clear that u(t) € PC(Jw, E*) is an e-positive mild solution of the system (P), which satisfies

(1) = Sy (D)0 + Koy (1)) + J Tt —5) [ F(s, uls)) + Cu(s)]ds
0

k k
+8a(1) > S I (uet) + Ko (1) D Ky ()1 (17)). (29)

i=1 i=1
By the global existence property of u;(t) in J;, i € N, the solution u(t) defined by Eq.(28) is a
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