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Abstract
In this paper we study the existence of local, global mild solu-
tion for the abstract fractional integro-differential Cauchy prob-
lem

Dfu(r)
u(0)

Au(t) + /t B(t — s)u(s)ds + f(t,u(r)), (1)
0
Uup € X, (2)

where Dfu represents the Caputo derivative for @ € (0, 1),
A, (B(t));>0 are closed linear operators defined on a common
domain which is dense in a Banach space X and f satisfies
appropriated conditions.
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1 Introducao

In this paper we study the existence of local and global solution for the abstract fractional
integro-differential system. For this purpose, we introduce the theory of resolvent operator studied
in (SANTOS, 2019) for the fractional integro-differential problem

Dfu(t) = Au(t)+ /t B(t = s)u(s)ds, t=>0, 3)
0
u(0) = uop. 4)

where A, (B(1)):>0 are closed linear operators defined on a common domain which is dense in a
Banach space (X, || - [|), and D¢ h(¢) represents the Caputo derivative of & € (0, 1) defined by

DIh(1) = /0 g1oalt = ) (s)ds.

where g1, is the Gelfand-Shilov function gg(1) = 5.1 > 0, with f = 1 - .

In the past decades, considerable attention has been attracted to the theory of resolvent operator
for integro-differential equations. We refer to the book by Gripenberg et. al. (GRIPENBERG;
LONDEN; STAFFANS, 1990) for the case where the underlying space X has finite dimension. For
abstract integro-differential equations on infinite dimensional spaces, we cite the book by Priiss
(PRUSS, 2013) and the papers of Da Prato et al. (DA PRATO; TANNELLI, 1985; DA PRATO;
LUNARDI, 1988), Grimmer et al. (GRIMMER; KAPPEL, 1984; GRIMMER; PRITCHARD, 1983;
GRIMMER; PRUSS, 1985), Lunardi (LUNARDI, 1990, 1985), Sforza (SFORZA, 1991) and Dos
Santos et al. (SANTOS; HENRIQUEZ, 2015; SANTOS; HENRIQUEZ; HERNANDEZ, 2011).
With a resolvent family also it is possible study a existence and regularity of solutions for fractional
integro-differential equations (AGARWAL; SANTOS; CUEVAS, 2012; LI; SUN; FENG, 2016a).

Regarding the fractional differential equations in spaces of infinite dimension this problem has
been extensive studied, we can mention the pioner thesis of Bajlekova (BAJLEKOVA et al., 2001)
and the works of (HERNANDEZ; O’REGAN; BALACHANDRAN, 2013; LI; SUN; FENG, 2016b;
KEYANTUO; LIZAMA; WARMA, 2013; LI; SUN; FENG, 2016a; WANG; CHEN; XIAO, 2012;
ZHOU; JIAO, 2010) and references therein. For abstract fractional integro-differential equations in
infinite dimension we suggest the articles Agarwal et. al. (AGARWAL; SANTOS; CUEVAS, 2012)
in the case of a € (1, 2), the book of Kosti¢ (KOSTIC, 2015), Ponce (PONCE, 2013) and Herzallah
et. al. (EL-SAYED; HERZALLAH, 2005) when B(t) = a(t)A,t > 0. To the best of the authors’
knowledge, a continuation solutions theorem of mild solutions for the (3)-(4) with @ € (0,1) is a
subject that has not been treated in the literature. This is the principal motivation of this paper.

This work has three Sections. In Section 2, we comment about the theory of a-resolvent
operator introduced in (SANTOS, 2019) for the better understanding of work. In Section 3, we show
the existence of local, global existence and uniqueness of mild solution for the non-homogeneous
equation (1)-(2) is discussed.

By D¢h(t) we denoted the Caputo derivative of @ > 0 defined by (SAMKO; KILBAS;
MARICHEV, 1993)

n

DY h(t) := /tgn_a(t - ) d h(s)ds,
0

ds"
where n is the smallest integer greater than or equal to a and gg(?) := %, t > 0,8 > 0. These
functions satisfy the semigroup property

8a * 88 = 8a+p-
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If we denote

JEF() = (g0 % )(1) = / galt — )£ (s5)ds, )
0
we have
DI f(t) = f(1), 6)
n—1 k
@ na 3 3 & m
JDIf(@) = f(0) ;f (0)7- @

Applying the properties of the Laplace transform and taking into account that g, (1) = 1%, we
obtain

n—1
DY F() = 2°F () = ). fO(0)a071, @®)
k=0

(see (BAJLEKOVA et al., 2001; SAMKO; KILBAS; MARICHEV, 1993) for details.)

Throughout this paper, let (Z, || - ||z) and (W, || - ||w) be Banach spaces. We denote by L(Z, W)
the space of bounded linear operators from Z into W endowed with norm of operators, and we write
simply £(Z) when Z = W. By R(Q) we denote the range of a map Q and for a closed linear operator
P : D(P) € Z — W, the notation [D(P)] represents the domain of P endowed with the graph
norm, ||z||1 = ||zllz + [|Pzllw, z € D(P). The notation, B(x, R) and B[x, R] represent the open ball
and the closed ball respectively with center at x and radius R > 0 in X. Let I C R, by C(/, X) we
denote the space of continuous functions defined on 7 into X and C!(/, X) stands for the space of
continuous functions from 7 to X having continuous derivative. We define the space C* (1, X), by

C*(1,X) ={xeC(I,X): D% e C(I,X)}.
We denote by L” (I, X) the set of all meansurable functions u(-) on /, into X such that || u(z) ||P

1

is integrable ans its norm is given by || u ||1r(7.x)= (/I | u(z) ||p) " ; similarly, by Ly (Ry,X) we
denote the space of the functions belonging L” (I, X) for any compact set / C R,. When X = R”,
for some n, we denote for simplicity by C(I), C'(I), C*(I), LP(I) and Lfoc (R;) respectively. The
notation p(P) stands for the resolvent set of P and R(A, P) = (A — P)~! is the resolvent operator of
P. Furthermore, for appropriate functions K : [0, 00) — Z and S : [0, 00) — L(Z, W), the notation
K denotes the Laplace transform of K and S * K the convolution between S and K, which is defined
by S« K(t) = fot S(t —s5)K(s)ds.

2 Preliminaries

To begin, we introduce the following concept of resolvent operator for the abstract fractional
integro-differential problem (3)-(4).

Definition 1 A one parameter family of bounded linear operators (Ry(t))i>0 on X is called a
a-resolvent operator of (3)-(4) if the following conditions are verified.

(a) The function R,(-) : [0,00) — L(X) is strongly continuous and R,(0)x = x for all x € X
and a € (0,1).
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(b) Forx € D(A), Ry (-)x € C([0, o), [D(A)]) N C*((0, ), X), and

DR, (1)x

AR, (t)x + ‘/Ot B(t — s)Ry(s)xds )

Ro(1)Ax + /t Ry (t — 5)B(s)xds, (10)
0

for everyt > 0.

In this work we always assume that the following conditions are verified.

(H1) The operator A : D(A) C X — X is a closed linear operator with [D(A)] dense in X, for
some ¢ € (5, ) there is positive constants Cy = Cy(¢) such that 1 € p(A) for each

S04 = {4 € C: arg(d) < ¢} C p(A),

C
and || R(1,A) ||< ﬁ forall A € Zp 4.
(H2) Forallr > 0, B(t) : D(B(t)) € X — X is a closed linear operator, D(A) € D(B(t)) and
B(-)x is strongly measurable on (0, co) for each x € D(A). There exists b(-) € L' (R")

loc

such that Z(ﬂ) exists for Re(d) > 0 and || B(t)x ||< b(z) || x [[y forall # > 0 and x €
D(A). Moreover, the operator valued function B : X »/» — L([D(A)], X) has an analytical

extension (still denoted by B) to %o,4 such that IB(D)x|| < |1B)|| x|l for all x € D(A), and
1B = O (g as |4] — co.

(H3) There exists a subspace D € D(A) dense in [D(A)] and positive constants C;, i = 1,2, such
that A(D) € D(A), B(1)(D) € D(A), |AB(A)x]|| < Ci|x|| for every x € D and all A € X 4.

Remark 1 We note that conditions of type (H2) and (H3) have been previously considered in
the literature; see (SANTOS; HENRIQUEZ, 2015; SANTOS; HENRIQUEZ; HERNANDEZ, 2011;
GRIMMER; PRITCHARD, 1983) for details.

In the sequel, for r > 0 and 0 € (%, ¢),
Yo={1€C:|A|>r, and | arg() |< 6}.
In addition, p(F,) and p(G,) are the sets
0(Fy) ={1€C: Fy(A) := (A1%T—A-B(1)™" € £(X)} and

p(Ga) ={1€C:Ga() =21 T-A-B) ' € L(X)}).

We next study some preliminary properties needed to establish existence of a a-resolvent operator
for the problem (1)-(2). The proof of the nexts rsults can be found (SANTOS, 2019).
In the rest of this paper we assume the conditions (Hi),7 = 1,2, 3, holds, r, 6 are numbers such
that r > ry and 6 € (7/2, ¢). By F,,g,l“;',g, i = 1,2, 3, we define the paths
Frl’g ={te’? : 1t >r}, Frz’g = {re” : -0 <& <6} and Ff’g ={te” : 1 >r},

and I p = 1.3:1 Fﬁ o oriented counterclockwise.
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Remark 2 The properties about the families G, and F, were established in in (SANTOS, 2019).
We start defining the a-resolvent families for the problem (3)-(4) with @ € (0, 1).

Definition 2 We define the operator family (R, (t));>0 by

1
Ry (1) = 3 ) MGy (D)dA,t > 0, (11)
r,0

and the auxiliary resolvent operator family (Sy(t))s>0 by

tl—(x
S, (1) = P /F eYF,()dA,t > 0. (12)
r,0

Remark 3 When B(t) = 0, for all t > 0, the operators family (Ry(t))r>0 and (Su(t))i>0 co-
incide with operators family (Eo(t*A))i>0 and (Eq.o(t*A))i>0 respectively, for more details by
(Eq(t%A))is0 and (Eqo(t*A))i>0 see (ANDRADE et al., 2015; BAJLEKOVA et al., 2001; CAR-
VALHO NETO, 2013) and the references therein.

We next will establish some properties of (R, (7));>0 and (S, (¢));>0 family.
Theorem 1 The operator function R, (-) is:
(i) exponentially bounded in L(X);
(ii) exponentially bounded in L([D(A)]);
(iii) strongly continuous on [0, 00) and uniformly continuous on (0, );
(iv) strongly continuous on [0, ) in L([D(A)]).
Comment: Proof of (i). If ¢ > 1, from (11) we get

1

| / MG ()dl |
2 0

ds c [f
< = e!s cos o> L~ tr cos .ﬁ—‘d
B / " on / ¢

2

| Ra(®) |

rt

(nrlcos@l

If t € (0, 1), using that G,(-) is analytic on X, y, we get

1
| —/ e"'Go(1)dA ||
2mi rr,

_/ tscosé?ds £ ‘ "COSfdé:

| Ra(®) |

271

(_/00 ucosedu_'_ c /gercosfdég)
T J, u 2nJ_y

C CO .
_— e
nr| cos 0|
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This shows (i)
Proof of (i7). From (11) that the integral in

1
R(t) = — / eM"AG,()dA, t >0,
2ni Jr, ,

is absolutely convergent in £([D(A)], X) and defines a linear operator
R(1) € L([D(A)], X).

Using that A is closed, we can affirm that R(7) = AR, (¢).
From Lemma, G, : £, 9 — L([D(A)]) is analytic and || G4(2) |1< C|A|7!. Ift > 1 and
x € D(A), we get

1
I ARa (1)x || [ / eV AGq(D)xdA ||
L Jr, 0

o %
(g/ zsco%Hds + E/ etrcosfdg) Il x 1
T, s 2m )y

C co
(— ) il

nr| cos 6|

IA

Fort € (0,1) and x € D(A) we get

| AR | = I 5 / N AG L (Dxdd |

7
_/ tvcosts |x ”1
< / &g | x ||

=)

IA

EE— X .
(ﬂr|cos9| I 1h

From before we obtain R(+) is exponentially bounded in L([D(A)]).
Proof of (iii.) It is clear from (11) that R, (-)x is uniformly and strongly continuous at ¢ > 0 for
every x € X. We next establish the strongly continuity at # = 0. Using that

1 1
— A etda = lim —/ A letda=1,
27U Fr’g N_)OO27U {Fr’gi VSSSN}UCN,H

where Cy. ¢ represent the curve Ne' for § < & < 2r — 6. Forx € D(A) and 0 < t < 1 we get

1
Ro(x—x = — ( UG (D)x — A1 )d/l
2ni Jr, ,
1 _
= — YAV Fy (D) (A + B(2))x dA.
27 I, o

Furthermore, it follows, and assumption (H2) that

| YA F (D) (A + B()x ||< e'C (| - |a+1) = H(A),
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where H(-) is integrable for A € I, y. From the Lebesgue dominated convergence theorem we infer
that

lim (Ry()x —x) = i / A7F, () (A + B(2))xdA. (13)
t—0* 2ni Jr, .,

Let now Cy_g be the curve Le' for —0 < ¢ < 6. Turning to apply the Cauchy’s Theorem combining
with the estimate

~ co
I A Fo(D)(A+B(D)xdA || —
CrL.o L
we obtain
1 —~
— A7VF, () (A + B(2))xdA
2ni Jr, ,
1 —~
= lim — / AVF, () (A + B(2))xdA = 0,
L—co 2711 {T'r, 0 r<s<L}UCr ¢

we can affirm that lim; o+ || R, (#)x —x ||= 0 for all x € D(A), which completes the proof of the
strongly continuity on £(X) since D(A) is dense in X and R, (-) is bounded on [0, 1] by (7).
Proof of (iv). For x € D, proceeding as in the proof of (iii), we have

1 —~
AR, (1)x — Ax = — e AVAF, (1) (A + B(2))x dA.
27 T

Using now that (A + B(1))x € D(A), the inequality and the assumption (H3) and proceeding as in
the proof of (iii) we can conclude that AR, (t)x — Ax — 0 as ¢t — 0. The above remarks shows
that [|R,(t)x — x||; — O ast — O for all x € D(A), since D is dense in [D(A)] and R, (+) is
exponentially bounded in L([D(A)]).

Theorem 2 The operator funtion t — 118, (t) is exponentially bounded in L(X) and uniformly
(strong) continuous on (0, c0).

Comment: For ¢ > 1, we have

11971 Se (1) |l

1
5 [ e"FaC0an]
QL Fr,ﬂ

(g/mestcosaé+£/getrcos§rl—ad§)
nJ, s 2m J g

C corl=®\
+ e .
nr?®| cos 6| m

IA

Since F,(-) is analytic on Z, g, for t € (0, 1) we get
| 1% Sa (1) |l
1
- N5 [ Ra
it Jr 0

E/w6150050@+£ Oercosfdf
7 Jy
C

~IN

IA

s¢ 2n J g
—_— er_“ e'.
nr®lcosf| w
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This completes the proof of exponential boundedness.
For the uniform continuity, let # > 0 and x € X, we have for R > r and s > 0,

1

SR cos(0)
pdo Ce
270 Jr, yn{AeC:A|=2R)

o = wsRY | cos(9) |

C (s}
e/ltFa/(/l)d/l ||S _/ eSO’COS

T JR
Therefore, for all € > 0, we can choose R; > r such that for all s € [%, %] we have

1
| — / N F (D) 1<
278 Jr, o0 {a:1A12R,)

On the other hand, e**F, (1) — eYF,(1) as s — t, uniformly on I, N {1 € C :| A |< R,}, this
implies, for all € > 0, there exists 6 > 0 such that

I / M F,(1)dA — / eME,()dA ||< <. (15)
I, oN{A€C:|A|<R} Iy, oN{A€C:|A|<R} 2

By (14) and (15) we obtain for all € > 0, there exists 6 > 0 such that if |  — s |< § we have

(14)

0| m

11771 Sa (1) = 5771 S (5) lI< €.
This completes the prove.

Corollary 3 Let f € L}OC(RJr, X), then the convolution t*~'S, (1) * f(t) = /Ot(t —5)2718, (1 -
) f(s)ds exists (as a Bochner integral) and defines a continuous function from R into X.

Lemma 4 For every A € C with Re(1) > max{0, r}, ﬁ;(/l) = Go(A) and (12718,) () = F,(1).

Comment:
Proof Using that G, () is analytic on X, », and that the integrals involved in the calculus are absolutely

convergent, we have
* 1
/ — / e" NG, (y) dydt
0 27Tl Fr,H
1

(A=7)"'Ga(y) dy.

Ro() = /0 " R, (1)

2mi |

By

| 0 C ¢ c
A—v) "G, d < —  Ldé < —1d
”/CL,,,( VG dyll < Lu—ﬂm §<[9 =1 AnL-%

26C
(L-121)

we have ch , (1 =y)"'G4(y) dy converges to 0 as L — oo. Therefore

— 1 B
Ro(D) = =— [ (A=y)"'Gu(y)dy
2mi T o

: 1 B
= lim (_/ (A=17"'Ga(y) dy| = Go(A).
L—oo \ 270 Jir, . r<s<L}UCL g
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From F,(+) is analytic on X, g using the same argument as before we have

“ 1
[ sm [ e roaar
0 i Fr,H
1

= 2— (/1—)’)_1Fa()’) dy.
Tl T,

t‘HSa(/l):/ e V1708, (¢)dt
0

Since

1 0 C 9 C
1 [ =R < [ o—mrdes [ —Crae
Cro ol A=yIlyl® _g (L= A])L™

20CL
(L= apLe

we have /CL , (1 —y)~'F,(y) dy converges to 0 as L — co. We infer

1

la/_]Sa(/l) - % - (/1_7)_1Fa(7)d7
r,0

) 1 _
lim (—/ (A=y)'Faly) dy| = Fa(Q).
{T'r, 0: r<s<L}UCp, ¢

L—oo \ 271
Theorem 5 The function R, (+) is a a-resolvent operator for the system (3)-(4).
Comment: Let x € D(A). From Lemma 4, for Re(1) > max{0,r},
Ra()[A'7" (AT~ A~ B)]x = x,

which implies . _ L
AR, (Dx —x = R, (D) Ax + 'R, (1) B(A)x,
we get . . . .
ARy (D)x — 2% x = Ry (1) Ax + R (1) B(D)x,

and applying (8) and (WOLFGANG et al., 2002, Proposition 1.6.4) we obtain
DR, ()x = Ry (D) Ax + (Ry * B) ()x.

By the uniqueness of the Laplace transform we get
t
DR, (1)x = Ry (1) Ax + / Ry (t — 5)B(s)xds.
0

Arguing as above but using the equality [117% (197 — A — B (/l))]ﬁ(:(/l)x = x, we obtain that (9)
holds. The proof is now completed.
We shall prove a result the existence of an analytic extension of resolvent operator.

Theorem 6 The function Ry : (0,00) — L(X) has an analytic extension to X5, 6 = min{¢ —
s
5, — ¢} and

1
Ri(2) = 5 /r 1e%Go () dA, 7 € sy, (16)
r,0
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Comment: For A € I, 4 and z € X5, we can write 1z = s | z | €8+ where 5 <arg(z)+é <
m,—0<¢&<6@ands>r. If| z|> 1, from (11) we get

1
I —/ eGo()dA ||
27i 0

L‘/ eRe(da) = 9 | dA |
27Ti1"9 |/l|

_/ s|z|cos(arg(z)+9)ds C/ r|z|c05(arg(z)+$)dé_-

| Rer(2) |l

IA

IA

27r

C co "
+— e
nr|cos(arg(z) +6)| =«

On the other hand, using that G, (+) is analytic on X, g, for 0 <| z |< 1 we obtain

| Ra(2) | | —/ et Go()d ||

[%
< _/ s|z|cos(arg(z)+6) & ds + £ ercos(arg(z)+§)dég
- Iz § 2
0
< (_ / ucos(arg(z)+0) du + £ e cos(arg(z)+§)d§)
r

T u 2

c LCO\
(7TI’| cos(arg(z) + 9)| ) ¢

This property allows us to define the extension R, (z) by this integral.
Similarly, the integral on the right hand side of (16) is also absolutely convergent in £(X) and
strongly continuous on X for |arg z| < &, we observe for A € ', ¢

A(z+h)

h

e _ e/lz A(z+h) _ e/lz

e
1 Go(D) =BG, (D) || < |

C
< ——/le’lz|——>0,|h|—>0,
h r
and

A(z+h)
h

where K (-) is integrable for A € I', y. From the Lebesgue dominated convergence theorem which
implies that R/, (z) verifies (16).

In the next result we show that existence of resolvent operator implies in the existence of solutions
for problem (1)-(2).

e _ e/lz

C
| Go(d) —1e¥Go (1) || < eRett =

1] =K (1),

Theorem 7 Let xg € [D(A)] and define u(t) = Ry (t)xg. Then
u € C([0, ), [D(A)]) N C*((0, c0), X),
and is a solutions of (3)-(4).

Comment:

By Theorem 1 (iii) and Theorem 6 it is easy to see that u(z) = R,(f)xo is a function in
C([0,00),[D(A)]) N C%((0,0), X). By Theorem 5 we have u(t) = R, (t)xq satisfies the problem
(1)-(2).
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3 Maximal mild solutions

In this section we study the concept continuation of local mild solutions and existence of global
mild solution to (1)-(2). First, we study the existence of local the mild solution for the problem

(D-(2).
We denote by

* Ce=supseog Il f(s,u0) |l
* D¢ =supcpog |l f(s,u(s)) |
o Mg = max {sup,cio | Sa(t) [l supseioz I Pa®) II} -

Now we define a concept of mild solution for the semilinear integro-differential fractional problem

t
Dfu(t) = Au(t) +/ B(t — s)u(s)ds + f(t,u(t)), t € [0, a),
0
u(0) = uo,
where @ € (0, 1) and f is a apropriate function. In the sequel, R, (-) and S,(-) is the a-resolvent
operators and auxiliary resolvent operator studied in defined by (11) and (12) respectively.

Now we wil construct a notion of mild solution of the problem (1)-(2). Let u : [0,00) — X isa
continuous functions satisfying (1)-(2). Then applying J;* at both sides of the equation (1) we have

u(t) = u(0)+J7Au(t) +JF(B(t) = u(t)) +J7 f(t,u(1)) (17)
= u(0) + 8o * Au(r) + go * (B(1) * u(1)) + go * f(1,u(?)).

Now assuming that this function is of exponential type and is locally integrable, we apply that
Laplace transform os both sides we obtain

w , AT | BIW | Fw@
A A¢ ¢ ¢
where f(u)(A) is a Laplace transform of f (¢, u(z)). We infer

a() =

257N = A= BQ)) up + (A%T = A= BO) ' Fw) (D)
= Go(ug+ Fa(D)f(u)(2)

= Ra(Dug+ 17718, (1) f (1) (2)

= Ro(Dug + 12718, (1) * f(t,u(?)).

7(1)

Finally applying the inverse of Laplace transform we end with the formula

t
u(0) = Roo + [ (0= 971, 0= 517 5.u(5)ds
0
this equation inspires the next definitions.
Definition 3 Ler 7 > 0, a function u : [0,7] — X is called mild solution of (1)-(2) in [0, 7] if
ue C([0,7],X) and

u(r) = 7?a(t)uo-+u[:t(t-S)“_lisa(t-— $)f (s, u(s))ds, (18)

holds for all t € 0, 7].
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Theorem 8 Lef f : [0,00) X X — X be a continuous function and locally Lipschitz in the second

variable and uniformly with respect the first variable, that is, for each x € X, there exists an open
ball B(x, R) and constant L = L(B(x, R)) > 0 such that

I fy)=f@v)lIsLily-vl,

forall y,v € B(x,R) and t € [0, ). Then, there exists 1y > 0 such that (1)-(2) has a unique mild
solutions in [0, 19].

Proof: Given ug € X, let B(ug,r) and L = L(B(ug,r)) be the Lipschitz constant of f. Given
b € (0,r) fixed, by Theorem 1 and Theorem 2 we can choose 7y > 0 such that

* || Re(Duo —uo |I< 5,

o and 20 (Lb + Cpy ) < &, forall 1 € [0, 7).
We define

S(19) ={u € C([0,70], X) : u(0) =up and || u(t) —ug ||< b forallt € [0, 19]}

with the norm || u [|= sup;e(g ) |l #(?) || and the operator T on S(79) by

0,79

T (u(r)) = Ro(t)uo + /t(t = )71 Sa(t = 9) f (s, u(s))ds.
0
If u € S(19), we have T(u(0)) = ug and T (u(t)) € C([0,79], X). On the other hand, we have

that

| 7 (u(r)) = uo |l

< | Re(Hug — up ||

+/O (t =) I Sar =) I (I £, u(s)) = f(s,u0) | + 1| £(s,u0) s

t t

< 1 Ra(Oug - uo || + / (t = )" ML | uls) - uo || ds + / (1 = )" My Cryds

0 0

1% [
< ” Ra/(f)u() — Uy ” +M-,-0Lb; + MTOCT E
M b b

< || Re()ug — up || +—2(Lb + Cq)t” < S+5= b,

a

for all ¢ € [0, 19], this show that T'S(1g) C S(19). If u,v € S(79) we obtain

| T@) -TeW) || < /0 (1= )7 1 Sult =) Il F(s.(5)) = F(s.v(s)) |l ds
' _ a1 _
< /0 (6 = )7 My L || u(s) = v(s) | ds
M. Lt¢
< sup || u(s) —v(s) || .
@ s€[0,70]
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This implies,
NLt?
1T -TO) | < fu=vI.
From MTOQLT < % by the Banach contraction principle we have that 7" has a unique fixed point in

S(70). This prove that (1)-(2) has a unique mild solutions in [0, 79].

Definition 4 Ler u : [0,7] — X be the unique local mild solution of (1)-(2) in [0, 7]. If there
exist T > T and u* : [0,7*] — X is a local mild solution of (1)-(2) in [0, 7], the we say u* is a
continuation of u over [0, T].

Definition 5 Ifu : [0,7*) — X is the unique local mild solution of (1)-(2) in [0, t] forall t € (0, 7*)
and does not have a continuation, then we call it a maximal mild solution of (1)-(2).

Theorem 9 Lef f : [0,00) X X — X be a continuous function and locally Lipschitz in the second
variable and uniformly with respect the first variable, that is, for each x € X, there exists an open
ball B(x, R) and constant L = L(B(x, R)) > 0 such that

I fy)=f@v)lI<Lily=-vl.

forall y,v € B(x,R) andt € [0,00). Ifu : [0, 79] — X is a unique mild solution of (1)-(2) in [0, 1],
then there exists a unique continuation solution u* of u in some interval [0, o + 7| with T > 0.

Proof: How u(ty) € X, let B(u(t),r) and L = L(B(u(1p),r)) be the Lipschitz constant of f.
Given b € (0, r) fixed, by Theorem 1 and Theorem 2 we can choose 7 > 0 such that

* || Ra(t)uo = Ro(To)uo II< §,

Mzyir b
o — 2= (Lb+ Crpyr)t” < 7,

M- D

o X0 _ (4 _ b
[t = (t—T10)* — 1] < 7

S

. /OTO(TO =) || [Salt = 5) = Sa(10 = )] £ (s,u(s)) || ds <

b

forallz € [19, 70+ 7].
We define

S(to+71)={w e C([0, 19+ 7], X) : w(t) = u(r) for all t € [0, 19] (19)
and || w(t) —u(to) ||[< bforallt € [19, 10+ 7]} (20)

with the norm || w [|= sup,¢o 7+7 || w(?) || and the operator 7" on S(79 + 7) by

T(w(1)) = Ra(t)uo + /0 (t = )71 Sa(t = ) f (s, w(s))ds.

If w € S(19 + 1), we have for all ¢ € [0, 79] that

T(w(t)) = Ro(t)ug + /Ot(t - s)“_lSa(t —5)f(s,u(s))ds =u(t),

DOS SANTOS, J. P. C. Continuation of mild solution for abstract fractional integro-difterential equations. C.Q.D. — Revista Eletrénica Paulista de
Matematica, Bauru, v. 22, n. 2, p. 135-152, set. 2022. Edi¢do Brazilian Symposium on Fractional Calculus.
DOI: 10.21167/cqdv22n22022135152 Disponivel em: www. fc.unesp.br/departamentos/matematica/revista-cqd

147



e\
Te\
A

T(w(t)) € C([0, 79+ 7], X) and

1 T(w()) = u(7o) |l
< [ Ra(B)uo — Ra(T0)uo |l

+/0 0 I [(t =)' Sa(t = 5) = (10 = )" Sa (70 = )1/ (5, w(s)) || ds

+ / | (= ) 8ot = ) f(s.w(5)) | ds

< |l Re(H)ug — R (10)uo ||
+ / (1= )" = (r0 = )] | Salt — ) f(s.u(5)) || ds
0
+ /0 (7= ) || [Sult = 5) = Su(70 - )] £ (s, u(s)) || ds
+ / | (= ) Salt — )£ (ssw(s)) — f(s.u(o) |l ds
+ / | (= )% Sat — ) f (s (o) || ds
< §+M[t" — (t=10)" =15 ] +§

MT()+T

(0

MT()+TCT0+T ta S b

+ Ll w(t) —u(ro) || 1 +

for all ¢ € [19, 79 + 7], this show that TS(7o+ 1) C S(79 + 7).
Ifu,v € S(1p + 7) we obtain

1 T(u(@®) -Th@) I < /0 (t =) 1 Salt =) Il (s, u(s)) = f(s,v(5)) || ds
< /O (1= 9" Mayer L | u(s) — v(s) Il ds
MT()+TLTQ
< T s uls) - v() |-
s€[0,1p+7]
This implies,
MT()+TL «
I 7w =T0) || < == jlu=v].
MTO+TLT

From < 4—1‘ by the Banach contraction principle we have that 7 has a unique fixed point in
S(71o + 7). This prove that (1)-(2) has a unique mild solutions in [0, 79 + 7]. Therefore there exists a
unique continuation solution of u(-).

Theorem 10 Ler f : [0,00) X X — X be a continuous, locally Lipschitz in the second variable,
uniformly with respect to the first variable, and bounded. Then the problem (1)-(2) has a global
mild solution in [0, 00) or exist w € (0, 00) such that u : [0, w) — X is a maximal mild solution of
(1)-(2), and limsup || u(t) ||= oco.

Dw”
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Proof: Let
H := {1t € [0,00) : Ju; : [0,7] — X unique mild solution to (1)-(2) in [0, 7] }.

We denote by w = sup H, we can consider a continuous function u : [0, w) — X that is a mild
solution of (1)-(2) in [0, w). If w = oo, the u is a global mild solution in [0, o). By the other side, if
w < oo we will show that limsup || u(¢) ||= co. By contradiction, suppose that there exists K < oo

—

t—w
such that || u(¢) ||< K forall ¢ € [0,w). Let {t,} C [0, w) is a sequence that converges to w. For all
€ > 0, there exist N € N and y € (0, w), such that, if m,n > N, we get

¢ || Raf(tn)uo - Ra(tm)uo ”S %,

o MuDw |40 (1 —10)® — 7% |< §

2M,,D,,
c = w-y) <5

*ty,>vandt, >y

Y
/O (tn = )| [Saltn = 5) = Saw = )] £ (s,u(s)) || ds <

~m

4 €
o [T Sultn = 5) = Sulow = )17 o) 1 ds < .
0
Without loss of generality, than ¢, > t,,, it follows from the estimative

| u(tn) —u(tn) | < |l Ra(tn)uo — Ra(tm)uo ||
‘/0 ’ Il (2 = S)a_lsa(tn —8) = (tm — S)a_lsa(tm =) f(s,u(s)) || ds

—+

+

[ "1 (= 971 = 5)f (s, u(s)) || ds
” Ra(ln)uo - Ra(tm)uo ”
/0 " (= )7 [Satn = 5) = Salw = )] £ (s, u(s)) || ds

IA

—+

+

/O [t = 9% Sa v = 8) = (1 = )Sa(w = $)1f (s.u(5)) || ds

—+

/O N (= 9 [Saltm = 8) = Salw = )1 f(s,u(s)) || ds

+

[ "1 (= 97— ) f (s, u(s)) || ds

= ” Ra(tn)uo - Ra(tm)uo ” +11 + 12 + 13 + 14-
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We observe

Iy = /0 Nt = ) [Sa b = ) = Salw = )] f(s,u(s)) || ds

IA

Y
/O | (= )% [Sutm = 5) = Sa(w — )]f(s.u(s)) || ds

tm
+ / | (= )% [Sa(tm = 5) = Suw = )] £ (5, u(s)) |l ds
Y
Im

< &y 2MWDW/ (b — 5)*\ds < S + M(tm — )

7 y 7 a

€ €
< 42

7 7

By the same way, we can show

I < /o n I (tn = )" [Sa(tn = 8) = Salw = )1 f(5,u(s)) || ds <

N m
+
| m

We get

I = /0 N = 97 Saw = 5) = (1 = $)Sa(w = )1 £ (5, u(s)) || ds

tm
< M,D, / (1 = )7 S (W = 5) = (1 — 5)]dls
0
M, D, €
< ” [(ty —tm)* — 1 — 1] < 7
and
tn
I = / | (tn = )™ St = 5)f(s,u(s)) || ds
tm
< MWDWM < f
a 7
Therefore

| u(tn) —u(tn) lI< €.

This shows that {u(¢,)} is a Cauchy sequence and therefore it has a limit, u,, € X. Then, we may
extende u over [0, w], obtaining the equality

u(t) = Ro (1)utg + /O (1 = )" 8o (1 — ) (s, u(s))ds,

for all + € [0,w], by Theorem 9, we can extend the solution to some bigger interval, wich is a
contradiction with the definition of w, by the contradiction above,

limsup || u(t) ||= oo.
I—Dw~

This finished the proof.
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