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Abstract
We present two implicit fractional linear multi-step methods
(FLMM) of order four for fractional initial value problems.
These FLMMs are of a new type that has not appeared before in
the literature. The methods are obtained from the second order
super-convergence of the Grünwald-Letnikov approximation
of the fractional derivative at a non-integer shift point, taking
advantage of the fact that the error coefficients of this super-
convergence vanish not only at first order, but also at the third
order terms.
The weight coefficients of the methods are obtained from the
Grünwald weights and hence computationally efficient com-
pared with that of the fractional backward difference formula
method of order four.
The stability regions of the proposed methods are larger than
that of the fractional Adams-Moulton method and the fractional
backward difference formula method. Numerical results and
illustrations are presented to justify results.
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1 Introduction
Consider the fractional initial value problem (FIVP)

𝐶
0 𝐷

𝛽
𝑡 𝑦(𝑡) = 𝑓 (𝑡, 𝑦(𝑡)), 𝑡 ≥ 0, 0 < 𝛽 ≤ 1, (1a)
𝑦(0) = 𝑦0, (1b)

where 𝐶
0 𝐷

𝛽
𝑡 is the left Caputo fractional derivative operator defined in Section 2, 𝑓 (𝑡, 𝑦) is a source

function satisfying the Lipschitz condition in the second argument 𝑦 guaranteeing a unique solution
to the problem (DIETHELM, 2010).

Fractional calculus and fractional differential equations, despite their long history, have only
recently gained places in science, engineering, artificial intelligence and many other fields.

Many numerical methods have been developed in the recent past for solving (1) approximately.
We are interested in the numerical methods of type commonly known as fractional liner multi-step
methods (FLMM).

Lubich (LUBICH, 1985) introduced a set of higher order FLMMs as convolution quadratures
for the Volterra integral equation (VIE) obtained by reformulating (1) (See also eg. (DIETHELM,
2010)). The quadrature coefficients are obtained from the fractional order power of the rational
polynomial of the generating functions of linear multi-step method (LMM) for ordinary differential
equations (ODEs). As a particular subfamily of these FLMMs, the fractional backward difference
formulas (FBDFs) were also proposed by Lubich in (LUBICH, 1986). Other forms of FLMM are
the fractional trapezoidal method of order 2 and the fractional Adams methods.

In this work, we propose two fourth order implicit FLMMs of new type that does not come under
the subfamilies of FLMMs listed in Section 2. The weight coefficients of the methods are obtained
from the simple Grünwald weights and has an improved stability region compared to the previously
known FLMMs of order four.

2 Prelimineries
For a sufficiently smooth function 𝑦(𝑡) defined for 𝑡 ≥ 𝑡0, the left Riemann-Liouville (RL)

fractional derivative of order 𝛽 > 0 is defined by (see eg. (PODLUBNY, 1999))

𝑡0𝐷
𝛽
𝑡 𝑦(𝑡) =

1
Γ(𝑚 − 𝛽)

𝑑𝑚

𝑑𝑥𝑚

∫ 𝑡

𝑡0

𝑦(𝜏)
(𝑡 − 𝜏)𝛽−𝑚+1 𝑑𝜏, 𝑚 − 1 < 𝛽 ≤ 𝑚, (2)

where 𝑚 = ⌈𝛽⌉ – the smallest integer larger than or equal to 𝛽.
The left Caputo fractional derivative of order 𝛽 > 0 is defined as

𝐶
𝑡0𝐷

𝛽
𝑡 𝑦(𝑡) =

1
Γ(𝑚 − 𝛽)

∫ 𝑡

𝑡0

𝑦 (𝑚) (𝜏)
(𝑡 − 𝜏)𝛽−𝑚+1 𝑑𝜏, 𝑚 − 1 < 𝛽 ≤ 𝑚, (3)

where 𝑦 (𝑚) is the 𝑚-th derivative of 𝑦.
Often, for practical reasons, the integer ceiling 𝑚 of the fractional order 𝛽 is considered to be

one or two. In this paper, we investigate the case of 0 < 𝛽 ≤ 1 when 𝑚 = 1. Further, there is no loss
in generality in the assumptions 𝑡0 = 0 and 𝑦(0) = 0.

In addition to the above two definitions, the Grünwald-Letnikov(GL) definition is useful for
numerical approximations of fractional derivatives.

𝐺𝐿
𝑡0 𝐷

𝛽
𝑡 𝑦(𝑡) = lim

𝛽→0

1
ℎ𝛽

∞∑︁
𝑘=0

𝑔
(𝛽)
𝑘

𝑦(𝑡 − 𝑘ℎ), (4)
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where 𝑔
(𝛽)
𝑘

= (−1)𝑘 Γ(𝛽+1)
Γ(𝛽−𝑘+1)𝑘! are the Grünwald weights and are the coefficients of the series

expansion of the Grünwald generating function 𝑊1(𝑧) = (1 − 𝑧)𝛽 =
∑∞

𝑘=0 𝑔
(𝛽)
𝑘

𝑧𝑘 . The coefficients
can be successively computed by the recurrence relation

𝑔
(𝛽)
0 = 1, 𝑔

(𝛽)
𝑘

=

(
1 − 𝛽 + 1

𝑘

)
𝑔
(𝛽)
𝑘−1, 𝑘 = 1, 2, .... (5)

For theoretical purposes, the function 𝑦(𝑡) is zero extended for 𝑡 < 0 and hence the infinite
summation in the GL formulation (4). Practically, the upper limit of the sum is 𝑛 = [𝑡/ℎ], where [·]
is the integer part function.

The three definitions in (2)–(4) are equivalent under homogeneous derivative conditions at the
initial point (PODLUBNY, 1999).

2.1 Numerical approximations of fractional derivatives
For numerical approximation of the fractional derivative, the GL definition is commonly used by

dropping the limit in (4) giving the Grunwald Approximation (GA) for a fixed step ℎ (OLDHAM;
SPANIER, 1974).

𝛿
𝛽

ℎ
𝑦(𝑡) :=

1
ℎ𝛽

∞∑︁
𝑘=0

𝑔
(𝛽)
𝑘

𝑦(𝑡 − 𝑘ℎ). (6)

A more general Grünwald type approximation is given by the shifted Grunwald approximation
(SGA) (MEERSCHAERT; TADJERAN, 2004).

𝛿
𝛽

ℎ,𝑟
𝑦(𝑡) = 1

ℎ𝛽

∞∑︁
𝑘=0

𝑔
(𝛽)
𝑘

𝑦(𝑡 − (𝑘 − 𝑟)ℎ), (7)

where 𝑟 is the shift parameter.
For an integer shift 𝑟, the SGA is of order one consistency (MEERSCHAERT; TADJERAN,

2004). However, it is shown in (NASIR; GUNAWARDANA; ABEYRATHNA, 2013) that the SGA
gives a second order approximation at a non-integer shift 𝑟 = 𝛽/2 displaying super convergence.

𝛿
𝛽

ℎ,𝛽/2𝑦(𝑡) =
𝐺𝐿
0 𝐷

𝛽
𝑡 𝑦(𝑡) +𝑂 (ℎ2). (8)

Some higher order Grünwald type approximations with shifts have been presented in (GU-
NARATHNA; NASIR; DAUNDASEKERA, 2019) with the weight coefficients obtained from some
generating functions in an explicit form according to the order and shift requirements.

2.2 Fractional linear multi-step methods
Among the several numerical methods to solve (1), we list the numerical methods that fall under

the category of FLMM.
Lubich (LUBICH, 1986) presented and studied numerical approximation methods for the FIVP

(1) through some convolution quadrature for the equivalent Volterra integral equation of the FIVP.
An analogous equivalent formulation for the FIVP is also given in (GALEONE; GARRAPPA,

2008) in the classical LMM form
𝑠∑︁

𝑘=0
𝑤

(𝛽)
𝑛,𝑘

𝑦𝑘 +
𝑛∑︁

𝑘=0
𝑤

(𝛽)
𝑘

𝑦𝑛−𝑘 = ℎ𝛽 𝑓𝑛, (9)
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where 𝑤
(𝛽)
𝑘

are the coefficients of the series expansion of the generating function 𝑤(𝜉) =
(
𝜌(1/𝜉)
𝜎(1/𝜉)

) 𝛽
with (𝜌, 𝜎) are the generating polynomials of the LMM for ODEs and 𝑤

(𝛽)
𝑛,𝑘

are starting weights
to compensate the reduction of order of convergence for certain class of solution functions having
singular derivatives at the initial point.

This FLMM have some subclasses in the literature with generating functions of the following
general forms:

1. Fractional Trapezoidal rule: The fractional trapezoidal method of order 2 (FT2) obtained
from the trapezoidal rule for the ODE has the generating function

𝛿𝐹𝑇2(𝜉) =
(
2

1 − 𝜉

1 + 𝜉)

) 𝛽
.

It is the only method known so far in the form 𝛿(𝜉) =
(
𝑎(𝜉)
𝑏(𝜉)

) 𝛽
, 𝑏(𝜉) ≠ 1.

2. Fractional backward difference formula: The fractional backward difference formula
(FBDF) obtained from the BDF for ODE has the generating functions of the form 𝛿(𝜉) =

(𝑎(𝜉))𝛽.
For orders 1 ≤ 𝑚 ≤ 6, a set of 6 FDBF𝑚 methods have been obtained in (LUBICH, 1986)
with polynomials corresponding to the generating polynomials of the BDF of order 𝑚 given
by
𝑤𝑚 (𝜉) =

(∑𝑚
𝑘=1

1
𝑘
(1 − 𝜉)𝑘

) 𝛽
.

3. Fractional Adams methods: The fractional Adams methods have the generating functions of
the form 𝛿(𝜉) = (𝑎(𝜉))𝛽

𝑞(𝜉) , where the polynomial 𝑎(𝜉) is one of the polynomials in FBDF methods
and 𝑞(𝜉) is determined to have a specified order of consistency for the method. Often, 𝑎(𝜉) =
1 − 𝜉 (see (GALEONE; GARRAPPA, 2006),(GALEONE; GARRAPPA, 2008),(GALEONE;
GARRAPPA, 2009),(GARRAPPA, 2009)). However, other polynomials in the FBDF have
also appeared in the literature (BONAB; JAVIDI, 2020),(HERIS; JAVIDI, 2018).
When 𝑞0 = 0, the method is explicit and is called fractional Adams-Bashforth methods (FABs)
(GALEONE; GARRAPPA, 2009; GARRAPPA, 2009). 𝜎0 ≠ 0 gives implicit methods called
fractional Adams-Moulton methods (FAMs).

4. A new type of second order FLMM is proposed in this journal by the present authors having
generating function 𝛿(𝜉) = (1 − 𝜉)𝛽𝑝(𝜉).

5. Rational approximation: In (ACETO; MAGHERINI; NOVATI, 2015), a classical LMM
type of approximation is proposed to obtain a class of FLMMs by rational approximations
of the FBDF generating functions. These methods have generating functions in the rational
polynomial form 𝛿(𝜉) = 𝑝(𝜉)

𝑞(𝜉) .

3 New FLMMs of order four
We present the main result of constructing two new FLMMs of order 4.
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The fractional derivative in (1a) is replaced by the super convergence approximation (8) of order
two. This gives at 𝑡 = 𝑡𝑛, with the error coefficient of order 2:

𝛿
𝛽

ℎ,𝛽/2𝑦(𝑡𝑛) =
1
ℎ𝛽

∞∑︁
𝑘=0

𝑔
(𝛽)
𝑘

𝑦(𝑡𝑛 − (𝑘 − 𝛽/2)ℎ) = 0𝐷
𝛽
𝑡 𝑦(𝑡𝑛) + 𝑎2ℎ

2
0𝐷

2+𝛽
𝑡 𝑦(𝑡𝑛) +𝑂 (ℎ4)

= (𝐼 + 𝑎2ℎ
2𝐷2) 𝑓 (𝑡𝑛, 𝑦(𝑡𝑛)) +𝑂 (ℎ4), (10)

where 𝑎2 ≡ 𝑎2(𝛽) = 𝛽

24 and 𝐷2 = 𝑑2/𝑑𝑥2 is the second differential operator.
Note that the super-convergence approximation diminishes all the odd order terms of ℎ1, ℎ3, etc.
Now, we perform two approximation on the super-convergence equation (8).
First, since 𝑘 − 𝛽/2 is not integer for 0 < 𝛽 ≤ 1, the point 𝑡𝑛 − (𝑘 − 𝛽/2)ℎ is not aligned with the

discrete points of the computational domain {𝑡𝑚, 𝑚 = 0, 1, ..., 𝑁}.
We approximate this non-aligned function value by an order 4 approximation using function

values at the nodal points

𝑦

(
𝑡𝑛 −

(
𝑘 − 𝛽

2

)
ℎ

)
= 𝑏0𝑦(𝑡𝑛−𝑘 ) + 𝑏1𝑦(𝑡𝑛−𝑘+1) + 𝑏2𝑦(𝑡𝑛−𝑘+2) + 𝑏3𝑦(𝑡𝑛−𝑘+3) +𝑂 (ℎ4), (11)

where 𝑡𝑛−𝑚 = 𝑡𝑛 − 𝑚ℎ and

𝑏0 =
1
48

(𝛽 + 2) (𝛽 + 4) (𝛽 + 6), 𝑏1 = − 1
16

𝛽(𝛽 + 4) (𝛽 + 6)

𝑏2 =
1
16

𝛽(𝛽 + 2) (𝛽 + 6), 𝑏3 = − 1
48

𝛽(𝛽 + 2) (𝛽 + 4).

Next, the differential operator 𝐷2 is approximated by the order 2 backward difference approxi-
mation given by

𝐷2𝑔(𝑥) = 1
ℎ2 (2𝑔(𝑥) − 5𝑔(𝑥 − ℎ) + 4𝑔(𝑥 − 2ℎ) − 𝑔(𝑥 − 3ℎ)) +𝑂 (ℎ2)

which gives for the function 𝑓 (𝑡𝑛, 𝑦(𝑡𝑛)) =: 𝐹 (𝑡𝑛)

ℎ2𝐷2𝐹 (𝑡𝑛) = (2𝐹 (𝑡𝑛) − 5𝐹 (𝑡𝑛 − ℎ) + 4𝐹 (𝑡𝑛 − 2ℎ) − 𝐹 (𝑡𝑛 − 3ℎ)) +𝑂 (ℎ4). (12)

Substituting (11) and (12) in (8), dropping the error term 𝑂 (ℎ4), choosing ℎ = 𝑇/𝑁, 𝑁 ∈ N, and
denoting 𝑡𝑘 = 𝑘ℎ, 𝑦𝑘 ≈ 𝑦(𝑡𝑘 ) and 𝑓𝑘 = 𝑓 (𝑡𝑘 , 𝑦𝑘 ), for 𝑘 = 0, 1, ..., 𝑁 , we obtain a new implicit
FLMM approximation scheme of order 4:

𝑛∑︁
𝑘=0

𝑔
(𝛽)
𝑘

(𝑏0𝑦𝑛−𝑘 + 𝑏1𝑦𝑛−𝑘−1 + 𝑏2𝑦𝑛−𝑘−2 + 𝑏3𝑦𝑛−𝑘−3)

= ℎ𝛽 [ 𝑓𝑛 + 𝑎2(2 𝑓𝑛 − 5 𝑓𝑛−1 + 4 𝑓𝑛−2 − 𝑓𝑛−3)], 𝑛 = 1, 2, ..., 𝑁. (13)

Again, the second differential operator 𝐷2 can also be approximated by the order 2 difference
formula

𝐷2𝑔(𝑥) = 1
ℎ2 (3𝑔(𝑥 − ℎ) − 8𝑔(𝑥 − 2ℎ) + 7𝑔(𝑥 − 3ℎ)) − 2𝑔(𝑥 − 4ℎ) +𝑂 (ℎ2)
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which gives for the function 𝑓 (𝑡𝑛, 𝑦(𝑡𝑛)) =: 𝐹 (𝑡𝑛)

ℎ2𝐷2𝐹 (𝑡𝑛) = (3𝐹 (𝑡𝑛 − ℎ) − 8𝐹 (𝑡𝑛 − 2ℎ) + 7𝐹 (𝑡𝑛 − 3ℎ)) − 2𝐹 (𝑡𝑛 − 4ℎ) +𝑂 (ℎ4). (14)

Substituting (11) and (14) in (8), we obtain another new implicit FLMM approximation scheme
of order 4:

𝑛∑︁
𝑘=0

𝑔
(𝛽)
𝑘

(𝑏0𝑦𝑛−𝑘 + 𝑏1𝑦𝑛−𝑘−1 + 𝑏2𝑦𝑛−𝑘−2 + 𝑏3𝑦𝑛−𝑘−3)

= ℎ𝛽 [ 𝑓𝑛 + 𝑎2(3 𝑓𝑛−1 − 8 𝑓𝑛−2 + 7 𝑓𝑛−3 − 2 𝑓𝑛−4)], 𝑛 = 1, 2, ..., 𝑁. (15)

The coefficients in the new FLMMs (13) and (15) are linear combinations of the Grünwald
weights 𝑔(𝛽)

𝑘
and thus does not involve any heavy computations.

Theorem 1 The new FLMMs in (13) and (15) are consistent of order 4 and has the generating
function of the form

𝛿(𝜉) = (1 − 𝜉)𝛽 𝑝(𝜉)
𝑞(𝜉) , (16)

with 𝑝(𝜉) = 𝑏0 + 𝑏1𝜉 + 𝑏2𝜉
2 + 𝑏3𝜉

3 for both FLMMs, and 𝑞(𝜉) = 1 + 𝑎2(𝛽) (2 − 5𝜉 + 4𝜉2 − 𝜉3) for
(13) and 𝑞(𝜉) = 1 + 𝑎2(𝛽) (3𝜉 − 8𝜉2 + 7𝜉3 − 𝜉4) for (15).

To the best our knowledge, this form of generating functions has not been appeared in the previously
known FLMMs in the literature.

4 Numerical tests
We used the proposed new FLMMs to compute approximate solutions of the non-linear FIVP

𝐷𝛽𝑦(𝑡) = 𝑓 (𝑡, 𝑦), 0 ≤ 𝑡 ≤ 1, 0 < 𝛽 ≤ 1,
𝑦(0) = 0.

where
𝑓 (𝑡, 𝑦) = Γ(2𝛽 + 5)

Γ(𝛽 + 5) 𝑡
𝛽+4 − 240

Γ(6 − 𝛽) 𝑡
5−𝛽 + (𝑡2𝛽+4 − 2𝑡5)2 − 𝑦(𝑡)2.

The exact solution of the problems is given by 𝑦(𝑡) = 𝑡2𝛽+4 − 2𝑡5.
The problem was solved with fractional orders 𝛽 = 0.4, 0.6 and 0.8. The computational domain

of the problem is {𝑡𝑛 = 𝑛/𝑁, 𝑛 = 0, 1, ..., 𝑁} and step size ℎ = 1/𝑁 , where 𝑁 is the number of
subintervals of the problem domain [0, 1]. The problem was computed for 𝑁 𝑗 = 2 𝑗 , 𝑗 = 5, 6, ..., 11.

The computational order of the method is computed by the formula

𝑝 𝑗+1 = log(𝐸 𝑗+1/𝐸 𝑗 )/log(ℎ 𝑗+1/ℎ 𝑗 )

where 𝐸 𝑗 , ℎ 𝑗 are the Maximum error and the step size for the computational domain size 𝑀 𝑗 .
Tables 1 and 2 list the results obtained in the computations for the proposed FLMM4.1 and

FLMM4.2 respectively for 𝛽 = 0.4, 0.6 and 0.6.
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𝛽 = 0.4 𝛽 = 0.6 𝛽 = 0.8
𝑁 Max. Error Order Max Error Order Max Error Order
32 2.553e-05 – 1.694e-05 – 6.289e-06 –
64 1.636e-06 4.00210 1.077e-06 3.93178 3.919e-07 4.14632

128 1.036e-07 3.94879 6.791e-08 3.95412 2.446e-08 4.00795
256 6.520e-09 3.96417 4.262e-09 3.97538 1.528e-09 4.00417
512 4.089e-10 3.98062 2.670e-10 3.98764 9.547e-11 4.00182

1024 2.560e-11 3.99019 1.671e-11 3.99387 5.966e-12 4.00082
2048 1.606e-12 3.99509 1.051e-12 3.99694 3.723e-13 4.00045

Table 1: Computational order of the new FLMM4.1

𝛽 = 0.4 𝛽 = 0.6 𝛽 = 0.8
𝑁 Max. Error Order Max Error Order Max Error Order
32 1.042e-05 – 8.593e-06 – 3.657e-06 –
64 6.572e-07 3.98706 5.433e-07 3.98340 2.281e-07 4.00305

128 4.129e-08 3.99244 3.415e-08 3.99159 1.424e-08 4.00150
256 2.588e-09 3.99612 2.141e-09 3.99581 8.895e-10 4.00075
512 1.619e-10 3.99804 1.340e-10 3.99789 5.558e-11 4.00038

1024 1.013e-11 3.99856 8.385e-12 3.99825 3.473e-12 4.00030
2048 6.375e-13 3.99036 5.314e-13 3.98000 2.165e-13 4.00364

Table 2: Computational order of the new FLMM4.2

5 Stability regions and comparisons
For the analysis of stability of a FLMM, the analytical solution of the test problem

𝐶𝐷𝛽𝑦(𝑡) = 𝜆𝑦(𝑡), 𝑦(0) = 𝑦0 is given by 𝑦(𝑡) = 𝐸𝛽 (𝜆𝑡𝛽)𝑦0, where 𝐸𝛽 (·) is the the Mittag-Leffler
function

𝐸𝛽 (𝑥) =
∞∑︁
𝑘=0

𝑥𝑘

Γ(𝛽𝑘 + 1) . (17)

The analytical solution 𝑦(𝑡) of the test problem is stable in the sense that it vanishes in the
𝛽𝜋-angled region

Σ𝛽 =

{
𝜁 ∈ C : | arg(𝜁) | > 𝛽𝜋

2

}
,

where the angle 𝛽𝜋/2 is measured from the positive real axis of the complex plane. The analytical
unstable region is thus the infinite wedge with angle 𝛽𝜋 complement to the analytical stability region
Σ𝛽.

For the numerical stability of FLMM, we have the following criteria:

Definition 1 Let 𝑆 be the numerical stability region of a FLMM. For an angle 𝛼, define the wedge

𝑆(𝛼) = {𝑧 : | arg(𝑧) − 𝜋 | ≤ 𝛼},

where 𝛼 is measured from the negative real axis of the complex plane. The FLMM is said to be

1. 𝐴(𝛼)-stable if 𝑆(𝛼) ⊆ 𝑆.

2. 𝐴-stable if it is 𝐴(𝜋 − 𝛽𝜋/2) stable. That is, Σ𝛽 ⊆ 𝑆.

3. unconditionally stable if it is 𝐴(0) stable. That is, the negative real line (−∞, 0) ⊆ 𝑆.
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We denote our new FLMMs in (13) and (15) as NFLMM4.1 and NFLMM4.2 respectively.
We compare the stability regions of previously established implicit FLMMs of order 4 with our

new FLMMs. For this, we consider the Lubich’s FBDF4 (LUBICH, 1986) and the FAM3(GALEONE;
GARRAPPA, 2008) given by their respective generating functions

𝛿𝐹𝐵𝐷𝐹4(𝜉) =
(
25
12

− 4𝜉 + 3𝜉2 − 4
3
𝜉3 + 1

4
𝜉4
) 𝛽

,

and
𝛿𝐹𝐴𝑀3(𝜉) =

(1 − 𝜉)𝛽
𝛾0 + 𝛾1𝜉 + 𝛾2𝜉2 + 𝛾3𝜉3 ,

where

𝛾0 = 1 − 5
6
𝛽 + 11

48
𝛽2 − 1

48
𝛽3, 𝛾1 =

31
24

𝛽 − 9
16

𝛽2 + 1
16

𝛽3,

𝛾0 = − 7
12

𝛽 + 7
16

𝛽2 − 1
16

𝛽3, 𝛾1 =
1
8
𝛽 − 5

48
𝛽2 + 1

48
𝛽3.
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Figure 1: Unstable regions for the new FLMM4.1 and FLMM4.2

From the Dahlquist’s second barrier for FLMM (see (GALEONE; GARRAPPA, 2008)), it is
clear that order 4 methods are not A-stable. However, 𝐴(𝜋/2)-stability and 𝐴(0)-stability could be
measuring tools for comparing the FLMM methods of orders higher than 2.

In Figure 1, the unstable regions of the proposed two FLMMs for various values of 𝛽 are
illustrated. Here, the straight lines in the figures depicts the A-stable boundaries of the analytical
stability region where the left side of the lines are the analytical stability regions Σ𝛽 for various 𝛽

values. Note that the unstable regions surpasses the A-stable boundaries for all values of 𝛽. This
confirms that the methods are not A-stable.
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Figure 2: Comparing the FLMMs of order 4

As for the 𝐴(𝜋/2)-stability, we see from the figure that the unstable regions are on the right side
of the complex plane for many values of 𝛽. However, there are values of 𝛽 for which the unstable
region peeks in to the left side as well, for example 𝛽 = 1.

We numerically computed the intervals for 𝛽 where the FLMMs are 𝐴(𝜋/2)-stable. Table 3
gives the values 𝛽∗ for which the intervals 0 < 𝛽 ≤ 𝛽∗ gives the 𝐴(𝜋/2)-stability.

NFLMM4.1 FBDF4 NFLMM4.2 FAM3
0.82960 0.843895 0.8501118 0.4384471

Table 3: Upper bound 𝛽∗ for 𝐴(𝜋/2)-stability

As we see, the NFLMM4.2 has the highest interval for 𝛽 for 𝐴(𝜋/2) stability followed by FBDF4,
NFLMM4.1 and FAM3. The FAM3 has a far lower interval size in this sense.

Note also that the A(0)-stability of FAM3 is destroyed as 𝛽 passes the 𝐴(𝜋/2)-stability bound
𝛽∗. The stability region for 𝛽 > 𝛽∗ becomes bounded and falls in the left side of the complex plane
(GALEONE; GARRAPPA, 2008) displaying only conditional stability.

As, for the computational efficiency, the weights of the NFLMMs have the simplest computational
effort as they involve only a linear combinations of the Grünwald coefficients 𝑔(𝛽)

𝑘
. Obviously, the

weights of FBDF4 require computations by the Miller’s formula with four previous weights.
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6 Conclusion
We proposed two new type of FLMMs of order 4 for FIVPs. The new FLMMs are 𝐴(𝜋/2)-stable

for a larger interval of the fractional order compared with known order 4 FAM3. Moreover, the
proposed methods outweighs the other methods in terms of computational cost as well.
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