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1 Introduction
There is an expressive scientific advance in the development of theory and applications in

Fractional Calculus, and several analytical techniques were proposed to solve fractional differential
equations (CAMARGO; OLIVEIRA, 2015; CARDOSO; SANTOS; CAMARGO, 2018; SUN et al.,
2018). However, finding explicit analytical solutions is not always an easy task. Thereby, the need
arises to obtain approximate values for solving such equations, through numerical methods. In the
literature, there are still relatively few numerical methods found for Fractional Calculus. In addition,
depending on the definition of the operator Fractional used, the interactions can be extremely slow
and expensive, due to the presence of persistent memory.

In this sense, numerical methods have been developed to solve fractional differential equations
(FDEs). Since the structure of the finite difference method is simple, the Nonstandard finite difference
schemes (NSFD) and Grünwald–Letnikov method (GL) are very popular methods for solving FDEs
(BALEANU et al., 2021; ONGUN; ARSLAN; GARRAPPA, 2013; SHABBIR et al., 2019; ZIBAEI;
NAMJOO, 2016).

The initial ideas of NSFD schemes came from the exact finite difference schemes (MICKENS;
SMITH, 1990). Regarding the positivity, boundedness, and monotonicity of solutions, NSFD
schemes have a better performance over the standard finite difference schemes, due to flexibility to
construct an NSFD scheme that can preserve certain properties and structures, which are obeyed by
the original equations. Besides these schemes, the discontinuous Galerkin methods for the fractional
diffusion equations are proposed in (MUSTAPHA; MCLEAN, 2011). Delay fractional differential
and various other related equations, Laguerre spectral methods have been used (KHADER, 2013).
The Grünwald-Letnikov method for fractional differential equations is presented in (SCHERER et
al., 2011). Because of the persisting memory of fractional-order operators, multi-step methods are
used for FDEs. The Adams-Bashforth-Moulton method (ABM) is an example of the multi-step to
solve FDEs (GARRAPPA, 2018; ZAYERNOURI; MATZAVINOS, 2016).

Motivated by the above discussion, we present the NSFD schemes to find the approximation
of solutions of the fractional differential system and compare it with the fractional ABM and GL
method.

The remainder of this paper is organized as follows. In Section 2, we recall some basic definitions
concerning fractional-order operators. Section 3 is devoted to illustrating NSFD method for FDEs;
Section 4, is devoted to showing the application and of test problems. Finally, Section 5 brings the
concluding remakes.

2 Preliminaries Concepts
This section presents some definitions related to fractional calculus (CAMARGO; OLIVEIRA,

2015).

Definition 2.1 Let 𝑓 : R → R be a differential function and 𝛼 ∈ C such that Re(𝛼) > 0. The
Riemann-Liouville fractional integral of order 𝛼 of 𝑓 (𝑡), 𝑡 ∈ R, denoted by 𝐽𝛼 𝑓 (𝑡), is defined as

𝐽𝛼 𝑓 (𝑡) = 𝜙𝛼 (𝑡) ∗ 𝑓 (𝑡) =
∫ 𝑡

0

(𝑡 − 𝜏)𝛼−1

Γ(𝛼) 𝑓 (𝜏) d𝜏, (1)

where the symbol ∗ denotes the Laplace convolution and 𝜙𝛼 (𝑡) is the Gel’fand-Shilov function,
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defined for 𝛼 ∉ Z−, as 𝜙𝛼 (𝑡) =


𝑡𝛼−1

Γ(𝛼) , 𝑖 𝑓 𝑡 ≥ 0

0 , 𝑖 𝑓 𝑡 < 0
and Γ(𝛼) is the Gamma function.

There are several definitions for fractional-order derivatives, among which Caputo derivative
and Riemann-Liouville derivative are the most frequently concerned in research (CAMARGO;
OLIVEIRA, 2015). These definitions are presented as follows.

Definition 2.2 Let 𝑓 : R → R be a integrable function, 𝛼 ∈ C with Re(𝛼) > 0, 𝛼 ∉ N and
𝑛 − 1 < 𝑅𝑒(𝛼) ≤ 𝑛, 𝑡 > 𝛼. The Riemann-Liouville fractional derivative of order 𝛼 of 𝑓 (𝑡) is

𝐷𝛼
𝑅𝐿 𝑓 (𝑡) = 𝐷𝑛 [𝐽𝑛−𝛼 𝑓 (𝑡)] = 1

Γ(𝑛 − 𝛼)

(
𝑑

𝑑𝑡

)𝑛 ∫ 𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑓 (𝜏) d𝜏. (2)

Definition 2.3 Let 𝑓 : R→ R be an differential function, 𝛼 ∈ C with Re(𝛼) > 0 and 𝑚 the natural
number, such that, 𝑚 − 1 < 𝑅𝑒(𝛼) ≤ 𝑚. The Caputo fractional derivative of order 𝛼 is defined as

𝐷𝛼 𝑓 (𝑡) = 𝐽𝑚−𝛼 𝐷𝑚 𝑓 (𝑡) = 𝜙𝑚−𝛼 ∗ 𝐷𝑚 𝑓 (𝑡). (3)

About the definition 2.3 we can observe:

• The usual derivative is recovered, since 𝐽0 𝑓 (𝑡) = 𝑓 (𝑡), if 𝛼 ∈ N.

• If 𝛼 = 𝑚 and 𝛽 = 𝑛, with 𝑛, 𝑚 ∈ N, the classical result is obtained if i.e., 𝐷𝛼𝑡𝛽 =
𝑡𝛽−𝛼Γ(𝛽 + 1)
Γ(𝛽 − 𝛼 + 1) ,

including the case where 𝛽 is zero, i.e., the derivative of the constant function is zero. This
fact is one of the main differences between the fractional derivative of Caputo and Riemann-
Liouville.

Next operator is very useful to obtain numerical solutions of fractional differential equations.

Definition 2.4 The Grunwald-Letnikov operator (GL) is given by

𝐷𝛼
𝐺𝐿 𝑓 (𝑡) = lim

ℎ→0
ℎ−𝛼

[𝑘]∑︁
𝑗=0

𝑤
(𝛼)
𝑗

𝑓 (𝑡 − 𝑗 ℎ) 𝑡 ∈ [0, 𝑡 𝑓 ], (4)

where 0 < 𝛼 < 1, [𝑘] is the integer parts 𝑘 = 𝑡−𝑎
ℎ𝑘

, 𝑎 and 𝑡 are the reals limits of operator 𝐷𝛼, which
denotes the fractional derivative, ℎ𝑘 > 0 is the step-size, 𝑡 𝑓 is the final time and 𝑤

(𝛼)
𝑗

are the weights
the coefficients in the power series expansion of (1 − b)𝛼, i.e.,

(1 − b)𝛼 =

∞∑︁
𝑗=0

𝑤
(𝛼)
𝑗

b 𝑗 , 𝑤𝛼
𝑗 =

Γ( 𝑗 − 𝛼)
Γ(−𝛼)Γ( 𝑗 + 1)

and, from a practical point of view, they can be evaluated recursively by means of the following
recurrence

𝑤
(𝛼)
0 = 1 , 𝑤

(𝛼)
𝑗

=

(
1 − 1 + 𝛼

𝑗

)
𝑤

(𝛼)
𝑗−1 , 𝑗 = 1, 2, ... (5)

𝑤
(𝛼−1)
0 = 1 , 𝑤

(𝛼−1)
𝑗

=

(
1 − 𝛼

𝑗

)
𝑤

(𝛼−1)
𝑗−1 , 𝑗 = 1, 2, .... (6)
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Lemma 2.1 Let 0 < 𝛼 < 1 and 𝑤
(𝛼)
𝑛 , 𝑤

(𝛼−1)
𝑛 the coefficients in the GL operator. Then for any

𝑛 = 1, 2, ... we have −1 < 𝑤
(𝛼)
𝑛 < 0 e 0 < 𝑤

(𝛼−1)
𝑛 < 1.

Proof. Is an immediate consequence of the recursive relationship stated in (5) and (6).

Lemma 2.2 Let𝑤 (𝛼)
𝑛 , be the coefficient in the GL operator, then

∑𝑛
𝑗=0 𝑤

(𝛼)
𝑗

= 𝑤
(𝛼)
0 +𝑤 (𝛼)

1 +...+𝑤 (𝛼)
𝑛 =

𝑤
(𝛼−1)
𝑛+1 .

Proof. Using finite induction to 𝑛 = 2, we have 𝑤
(𝛼)
0 + 𝑤

(𝛼)
1 + 𝑤

(𝛼)
1 = 1 − 𝛼 + 𝛼2

2 − 𝛼
2 = 𝑤

(𝛼−1)
2 .

Suppose 𝑛 = 𝑘, then
𝑤

(𝛼)
0 + 𝑤

(𝛼)
1 + ... + 𝑤

(𝛼)
𝑘

= 𝑤
(𝛼−1)
𝑘+1 . (7)

So let’s show that it goes for 𝑛 = 𝑘 + 1,

𝑤
(𝛼)
0 + 𝑤

(𝛼)
1 + ... + 𝑤

(𝛼)
𝑘

+ 𝑤
(𝛼)
𝑘+1 = 𝑤

(𝛼−1)
𝑘+1 . (8)

Using the equation (7), to prove the equation (8) is equivalent to prove

𝑤
(𝛼−1)
𝑛 + 𝑤

(𝛼)
𝑛+1 = 𝑤

(𝛼−1)
𝑛+1 . (9)

Then

𝑤
(𝛼)
𝑛+1 = 𝑤

(𝛼−1)
𝑛+1 − 𝑤

(𝛼−1)
𝑛

=

(
1 − 𝛼

𝑛 + 1

)
𝑤

(𝛼−1)
𝑛

= 𝑤
(𝛼−1)
𝑛

(
− 𝛼

𝑛 + 1

)
.

By property of Gamma function, we have

𝑤
(𝛼)
𝑛+1 =

Γ(𝑛 + 1 − 𝛼)
Γ(−𝛼)Γ(𝑛 + 2) , (10)

and
𝑤

(𝛼−1)
𝑛

(
− 𝛼

𝑛 + 1

)
=

Γ(𝑛 − 𝛼 + 1)
Γ(−𝛼 + 1)Γ(𝑛 + 1)

(−𝛼)
(𝑛 + 1) =

𝑛 + 1 − 𝛼

Γ(−𝛼)Γ(𝑛 + 2) . (11)

By equations (10) and (11) we can write 𝑤
(𝛼−1)
𝑛 + 𝑤

(𝛼)
𝑛+1 = 𝑤

(𝛼−1)
𝑛+1 . Then

𝑤𝛼
0 + 𝑤𝛼

1 + 𝑤𝛼
2 + ... + 𝑤𝛼

𝑛 = 𝑤
(𝛼−1)
𝑛 .

3 NSFD for fractional order system
Let be a nonlinear fractional differential equation,

𝐷𝛼𝑦(𝑡) = 𝑓 (𝑡, 𝑦(𝑡), _), 0 < 𝛼 ≤ 1 (12)

_ is a vector parameter. For the construction of the scheme, the left-hand derivative of the equation
(12) is replaced, using the derivative of GL, by the discrete representation in the form

𝐷𝛼𝑦(𝑡) ≈ 1
𝜙(ℎ, _)

𝑛∑︁
𝑗=0

𝑤
(𝛼)
𝑗

(𝑦𝑛− 𝑗 − 𝑦0), (13)
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where 𝑎𝑛 is an approximation of 𝑦(𝑡𝑛), ℎ > 0 is the time step and 𝜙(ℎ, _) is the denominator function.
The nonlinear term of equation (12) is given by nonlocal representation

𝐹 (𝑡𝑛, 𝑦𝑛, 𝑦𝑛−1, ..., _) , 𝑛 = 1, 2, 3, .... (14)

Thus, by the equations (13) and (14), we can rewrite the equation (12) as

1
𝜙(ℎ, _)

𝑛∑︁
𝑗=0

𝑤
(𝛼)
𝑗

(𝑦𝑛− 𝑗 − 𝑦0) = 𝐹 (𝑡𝑛, 𝑦𝑛, 𝑦𝑛−1, ..., _).

The discretized form for the equation (12), as follows

𝑦𝑛 = 𝑦0𝑤
(𝛼−1)
𝑛 −

𝑛−1∑︁
𝑗=1

𝑤
(𝛼)
𝑗

𝑦𝑛− 𝑗 + 𝜙(ℎ, _)𝐹 (𝑡𝑛, 𝑦(𝑡𝑛)). (15)

The denominator function 𝜙(ℎ, _) is a function of ℎ, and must satisfy the consistency condition,

𝜙(ℎ, _) = ℎ +𝑂 (ℎ𝑝), 𝑝 > 𝛼, ℎ → 0,

which ensures the convergence of the discrete approximation (13) to the associated continuous
derivative as ℎ tends to zero, where 𝑂 (ℎ𝑝) is the truncate error.

Examples of denominator functions that satisfy the above condition are 𝜙1 =
1 − 𝑒−ℎ

𝛼_

_
, 𝜙2 =[

1 − 𝑒−ℎ_

_

]𝛼
, 𝜙3 = ℎ𝛼, 𝜙4 =

sin(ℎ𝛼_)
_

; The influence of the denominator function can be seen in

(CARDOSO; SANTOS; CAMARGO, 2021). When 𝜙(ℎ, _) = ℎ, in the equation (13) the NSFD
scheme reduces to the GL scheme (SCHERER et al., 2011).

4 Results
To illustrate the application of the numerical method we use the fractional-order Hepatitis B

model (CARDOSO; SANTOS; CAMARGO, 2018). This model describes the viral infection caused
by the HBV virus that attacks the liver cells and it can cause chronic infection and evolve to cirrhosis
or liver cancer. The fractional-order model is given by

𝐷𝛼𝑇 (𝑡) = 𝑠 − 𝑑𝑇 (𝑡) − 𝛽𝑉 (𝑡)𝑇 (𝑡) + 𝜌𝐼 (𝑡)
𝐷𝛼 𝐼 (𝑡) = 𝛽𝑉 (𝑡)𝑇 (𝑡) − 𝛿′𝐼 (𝑡) − 𝜌𝐼 (𝑡)
𝐷𝛼𝑉 (𝑡) = 𝑝𝐼 (𝑡) − 𝑐𝑉 (𝑡).

(16)

where 𝐷𝛼 is Caputo fractional derivative, 𝛼 ∈ (0, 1] is the fractional order, and the biologicals
parameters are:

• 𝑇 (𝑡), 𝐼 (𝑡), 𝑉 (𝑡) : uninfected cells, infected cell and free virus;

• 𝑠 is the rate of production of new uninfected cells;

• 𝑑 is the death rate of uninfected cells;

• 𝛽 rate of infection of new uninfected cells;
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• 𝜌 the rate of cure;

• 𝛿′ is the death rate of infected cells;

• 𝛿 = 𝛿′ + 𝜌 the net loss rate of infected cells;

• 𝑝 is the rate of production of virus per infected cell;

• 𝑐 free virus clearance rate.

To performe the simulations the initial conditions are 𝑇 (0) = 2.3 × 106, 𝐼 (0) = 9.1 × 108, 𝑉 (0) =
8.5 × 109 and the values of the biologicals parameters 𝑠 = 5 𝑑𝑎𝑦−1, 𝑑 = 0.01 𝑑𝑎𝑦−1, 𝛽 =

0.0012 𝑑𝑎𝑦−1, 𝛿 = 0.5847, 𝑐 = 2.8058, 𝑝 = 6.0255, and 𝜌 = 0.01 𝑑𝑎𝑦−1.

(a) 𝑇 (𝑡) (b) 𝐼 (𝑡) (c) 𝑉 (𝑡)

Figure 1: State variables of the fractional-order model in the time-domain 𝛼 =

0.84, 0.88, 0.92, 0.96, 1. The step size is ℎ = 0.025.

In Figure 1, we can see the numerical solution of model (16) with several values of the fractional
order, 𝛼. As can be seen, following the course of the disease, the system evolves to a state of
equilibrium. The smallest values to 𝛼 imply slower convergence to the equilibrium state. These
numerical results confirmed the analytic prediction, given in (CARDOSO; SANTOS; CAMARGO,
2018).

Table (1) shows the maximum error value b𝑥 (ℎ) = max{|𝑥𝑛 − 𝑥∗𝑛 |} committed to approximate the
numerical solution of the model, for several values of the fractional exponent, 𝛼, different values for
ℎ and 𝑛 = 300.

Table 1: Global error by NSFD
H
HHH

HH𝛼

h 10−2 10−3 10−4 10−5

0.2 6.9 × 10−2 4.5 × 10−2 3.2 × 10−3 1.9 × 10−3

0.4 4.5 × 10−2 3.9 × 10−2 3.6 × 10−3 9.5 × 10−4

0.6 3.9 × 10−2 9.2 × 10−3 6.6 × 10−4 5.1 × 10−4

0.8 2.1 × 10−2 7.7 × 10−3 5.1 × 10−4 4.6 × 10−4

0.9 9.8 × 10−3 5.5 × 10−3 3.5 × 10−4 4.4 × 10−4

0.95 7.1 × 10−3 4.9 × 10−3 3.3 × 10−4 2.9 × 10−4

0.97 6.1 × 10−3 9.3 × 10−4 2.2 × 10−4 2.1 × 10−4

1 4.3 × 10−3 8.1 × 10−4 4.3 × 10−5 1.1 × 10−5

Table (1) shows that, as we increase the value of the fractional exponent and refine the value of
ℎ, there is a reduction in error between approximations for most cases. The smaller error obtained
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between the approximations is for 𝛼 = 1 and ℎ = 10−5, in the which b𝑥 (ℎ) = 1.1×10−5. This implies
that the solution numerical solution is very close to the exact solution.

To analyze the order of convergence (𝜓) of the NSFD method, a the estimate was calculated
according to the relationship

𝜓𝛼 = log2

(
b (2𝛼ℎ𝛼)
b (ℎ𝛼)

)
,

where b is the global error corresponding to step ℎ and with relation to the fractional exponent 𝛼.
The Table 2 shows the order of convergence of the method NSFD.

Table 2: Convergence
HHH

HHH𝛼

h 10−2 10−3 10−4 10−5 10−6

0.2 0.1022 0.1547 0.1923 0.2064 0.2807
0.4 0.3571 0.3741 0.4012 0.4074 0.4897
0.6 0.5490 0.5803 0.6037 0.6743 0.7216
0.8 0.8495 0.8623 0.8607 0.8967 0.9023
0.9 0.8793 0.9043 0.9175 0.9672 1.1247
0.95 0.9108 0.9239 0.9515 0.9612 1.2278
0.97 0.9511 0.9543 0.9575 0.9772 1.0641
1 0.9873 0.9903 0.9995 1.0671 1.5239

In Table (2) we can see that as 𝛼 decreases, there is a decrease in the convergence of the method.
Furthermore, we can observe that the NSFD method is convergent with the order of convergence
equal to 𝛼, which is in agreement with the analytical results.

5 Conclusions
In this paper, we presented an NSFD scheme as a tool to solve numerically a fractional differential

system. This scheme was satisfactory because the solution obtained are in agreement with the
analytical results.
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