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Fractional modeling of COVID-19 dynamics

Abstract
The present work seeks to provide a comparison between
the classical epidemiological model using ordinary differen-
tial equations and an approach through the fractional calculus,
using the COVID-19 pandemic in Brazil as a case study. To do
that,we propose a classic SAIRD (susceptible-asymptomatic-
symptomatic-recovered-dead) model and its fractional general-
ization, and we used the 𝐵1 method and the mean squared error
to compare and demonstrate which model and strategy is more
accurate reproducing the data of COVID-19 in Brazil.
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1 Introduction
At the end of December 2019, an outbreak of pneumonia characterized by fever, dry cough,

fatigue, and occasional gastrointestinal problems started at the Huanan seafood wholesale market
in Wuhan, Hubei, China, involving around 66% of the employees. On the first day of 2020, the
market was closed and, even with the closure, thousands of people in different Chinese provinces,
such as Hubei, Zhejiang, Guangdong, Henan, were infected. Cities like Beĳing and Shanghai were
also affected and later the infections, caused by a virus, reached other countries like Thailand, South
Korea, Vietnam, Germany, the United States and Singapore (WU; CHAN, 2020). The virus was
identified as a new coronavirus that causes a Severe Acute Respiratory Syndrome (SARS) and was
named as SARS-CoV-2, in reference to the SARS-CoV, which spread between 2002 and 2003 around
the world (WU; CHAN, 2020; CHAKRABORTY; MAITY, 2020).

On March 11, 2020, the so called COVID-19 (Coronavirus Disease 2019), caused by SARS-
CoV-2, was considered a pandemic by World Health Organization (WHO). According to data from
the WHO, on November 28, 2021, the world accounts for 261,075,046 cases and 5,195,138 deaths
due to the disease around the world.

The COVID-19 pandemic destabilized the whole world in the most diverse instances, generating
a crisis in public health, politics, economy, and mental health. Just like in the world, the situation in
Brazil has been extremely serious. The first case of COVID-19 was detected on February 26, 2020
and, since there, we counted 22,076,863 cases and 614,186 deaths due to COVID-19, according to
the Ministry of Health (BRASIL, 2021)

The transmission of SARS-CoV-2 occurs through airways, droplets and aerosols, usually due to
the proximity between susceptible persons and infectious ones. Even those infected individuals with
no obvious symptoms can transmit the virus, and it is estimated that about 80% of those infected
with SARS-CoV-2 are asymptomatic (SANTOS, 2020). Some measures can reduce the spread such
as frequent hand washing, social distancing, use of masks covering the mouth and nose, in addition
to cleaning surfaces (SANTOS, 2020).

Within the context of infectious diseases, mathematical modeling plays a major role in under-
standing the cellular dynamics or the spread of a disease in the population. More specifically, in the
case of COVID-19, several mathematicians, epidemiologists and researchers from all over the world
have engaged in using real data, performing curve adjustments, as well as making predictions about
the progress of the pandemic in the most diverse locations. In the present work we seek to analyze
the spread dynamics of COVID-19 using a SAIRD model and its fractional generalization.

The general objective of this work is the study of mathematical modeling through differential
equations and different techniques to improve it. More precisely, the study of the so-called fractional
modeling, that is, the modeling made by differential equations of non-integer order, aiming its use to
describe the population dynamics of COVID-19 in Brazil, using Caputo’s derivative of non-integer
order, to performing curve adjustments based on real data available (COTA, 2020), in accordance
with official sources.

2 Classic mathematical modeling for COVID-19
According to (KISS; MILLER; SIMON, 2017), infectious diseases may cause serious health

and economic crises, and mathematical modeling allows us to guide public and individual policy
responses to control these diseases. Since the beginning of the COVID-19 pandemic, many mathe-
matical models have been presented to help the authorities to design mitigation strategies. Here, we
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present a susceptible-asymptomatic-symptomatic-recovered model that account for the deaths due
to the COVID-19 infection. The model is schematized in Figure 1.

𝑟1 𝑆 𝐴

𝑟2 𝑆 𝐼 𝑎1 𝐴

𝑐1 𝐴

𝑐2 𝐼

𝑎2 𝐼

Figure 1: Schematic of compartments of the SAIRD model.

With the associated Ordinary Differential Equation system given by:

𝑑 𝑆
𝑑 𝑡

= −𝑟1 𝑆 𝐴 − 𝑟2 𝑆 𝐼
𝑑 𝐴
𝑑 𝑡

= 𝑟1 𝑆 𝐴 + 𝑟2 𝑆 𝐼 − 𝑎1 𝐴 − 𝑐1 𝐴
𝑑 𝐼
𝑑 𝑡

= 𝑐1 𝐴 − 𝑎2 𝐼 − 𝑐2 𝐼,
𝑑 𝑅
𝑑 𝑡

= 𝑎1 𝐴 + 𝑎2 𝐼,
𝑑 𝐷
𝑑 𝑡

= 𝑐2 𝐼 .

(1)

In this model, we work with five compartments: Susceptible (𝑆), Asymptomatic (𝐴), Symp-
tomatic (𝐼), Recovered (𝑅) and Dead (𝐷). The parameters used are described in the Table (1):

Table 1: Parameters used in the model (1)
Parameter Meaning Unit

𝑟1 Transmission rate of asymptomatic individuals days−1

𝑟2 Transmission rate of symptomatic individuals days−1

𝑎1 Asymptomatic recovery rate days−1

𝑎2 Symptomatic recovery rate days−1

𝑐1 Rate at which the asymptomatic individuals become symptomatic days−1

𝑐2 Rate of death associated to COVID-19 symptoms days−1

Therefore, the susceptible individuals get infected by asymptomatic and symptomatic persons at
rates 𝑟1 and 𝑟2, respectively. Initially all infected individuals belong to compartment 𝐴, which can
recover, and no longer infect people at a rate 𝑎1, or become symptomatic, and go to compartment 𝐼
at a rate 𝑐1. Symptomatic individuals can recover at a rate 𝑎2, entering the compartment 𝑅 or die,
because of COVID-19, at rate 𝑐2, entering compartment 𝐷.

THEODORO, M. M.; VILCHES, T. N.; CAMARGO, R. F.; MANCERA, P. F. A. Fractional modeling of COVID-19 dynamics. C.Q.D. – Revista
Eletrônica Paulista de Matemática, Bauru, v. 22, n. 2, p. 197–210, set. 2022. Edição Brazilian Symposium on Fractional Calculus.
DOI: 10.21167/cqdv22n22022197210 Disponível em: www.fc.unesp.br/departamentos/matematica/revista-cqd

199



Within the concepts of mathematical modeling, the initial conditions are essential parameters to
be determined. In this way the initial condition of susceptible 𝑆(0) = 𝑆0 can be less than the total
population (𝑁), since, depending on the adherence to isolation measures, we can have 𝑁 > 𝑆0.

It is possible to say that 𝛼1 = 𝑎1 + 𝑐1 is the inverse of 𝜏1, which is the average period that the
individual spends in the 𝐴 compartment. Also, 𝛼2 = 𝑎2 + 𝑐2 as the inverse of 𝜏2, which is the
average time the individual remains in 𝐼. Since we are assuming that asymptomatic individuals will
be detected when they have symptoms, the fatality rate is given by the total deaths divided by the
total infected 𝑚 =

𝑐1
𝛼1

𝑐2
𝛼2

(CHICCHI et al., 2020).
Considering 𝑚 = 0.029 (BRASIL, 2021) and the mean incubation and death periods are,

respectively, 𝜏1 = 5 days and 𝜏2 = 11 days. We can say that:

𝑐1 = 𝛼1 − 𝑎1,

𝑐2 = 𝑚
𝛼1 𝛼2
𝑐1

= 𝑚
𝛼1 𝛼2
𝛼1 − 𝑎1

,

𝑎2 = 𝛼2 − 𝑐2 = 𝛼2 − 𝑚
𝛼1 𝛼2
𝛼1 − 𝑎1

.

Thus, there are two parameters to be estimated 𝑎1, 𝑟1, 𝑟2 and two initial conditions 𝑆0 and
𝐴(0) = 𝐴0, transforming the ODE (1) into:

𝑑 𝑆
𝑑 𝑡

= −𝑟1 𝑆 𝐴 − 𝑟2 𝑆 𝐼,
𝑑 𝐴
𝑑 𝑡

= 𝑟1 𝑆 𝐴 + 𝑟2 𝑆 𝐼 − 𝛼1 𝐴,
𝑑 𝐼
𝑑 𝑡

= (𝛼1 − 𝑎1) 𝐴 − 𝛼2 𝐼,
𝑑 𝑅
𝑑 𝑡

= 𝑎1 𝐴 +
(
𝛼2 − 𝑚

𝛼1 𝛼2
𝛼1−𝑎1

)
𝐼,

𝑑 𝐷
𝑑 𝑡

= 𝑚
𝛼1 𝛼2
𝛼1−𝑎1

𝐼 .

(2)

3 Fractional mathematical modeling of COVID-19
Fractional Calculus is defined as the field of mathematical analysis that studies applications of

arbitrary order integrals and derivatives. Currently, the interest in fractional calculus is well being
stimulated by applications in numerical analysis and in different areas (CAMARGO; OLIVEIRA,
2015).

Since the purpose of mathematical modeling is to describe reality through equations, so that
the closer to reality this modeling is, we can somehow predict certain behaviors. In this sense, the
difficulties of building a model consistent with reality are many. As much as we add more terms and
make the mathematical model more refined, we may still be far from a faithful representation of the
situation in practice.

In this way, fractional modeling in many cases demonstrates a more accurate description of
the phenomenon analyzed than whole-order modeling. Atangana (ATANGANA, 2016) presents a
wide-range temporal or spatial dependence phenomena that can be better described with fractional
calculation. In contrast it is rarely possible to analyze these phenomena in such a refined way
in the integer order models. It is also possible to embed in the order of the derivative some
of the effects of neglected terms in the usual modeling (ARAFA; HANAFY; GOUDA, 2016;
CAMARGO; CHARNET; OLIVEIRA, 2009; CAMARGO; OLIVEIRA; VAZ, 2012; CAMARGO;
OLIVEIRA, 2015; DEBNATH, 2003; MAINARDI, 2010; ORTIGUEIRA; MACHADO, 2015;
DAVID; QUINTINO; SOLIANI, 2013).

There are many definitions and generalizations of fractional operators, but in this work we will
use the Riemann-Liouville integral and the Caputo derivative.
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3.1 Generalized Adams-Bashforth-Moulton method for fractional models
Fractional modeling plays an outstanding role in the field of applied mathematics to describe

certain phenomena. To use fractional modeling, it is usual to change the order of the classic model
by a non-integer order smaller than the original. So, it is necessary to look for solving techniques for
fractional differential equations (FDE), in case the equations are linear, the methodology of integral
transforms is sufficient for the solution. However, most modeling problems are non-linear and cannot
be solved by this methodology, for this class of models the solutions are obtained through numerical
methods (KURODA et al., 2019).

The low diversity of numerical methods for fractional solutions lays on the fact that non-integer
order derivatives are non-local operators, i.e, 𝐷𝛼 𝑓 (𝑡) depends on all values of 𝑓 (𝑡)) in every
analyzed interval [𝑡0, 𝑡 𝑓 ], i.e, the entire history of the function, in contrast to the classical derivative
is a local operator, which only analyzes in an arbitrary neighborhood of the point (DIETHELM;
FREED, 1998).

In the literature there are some numerical methods aimed at fractional modeling. In this work
we will use the fractional generalization of the classical method of Adams-Bashforth-Moulton
(GORENFLO, 1997). This numerical method in its fractional version is developed with the derivative
in the Caputo sense, considering the non-integer order of the fractional derivative, 𝑚 − 1 < 𝛼 ≤ 𝑚,
where 𝑚 is the smallest integer greater than 𝛼. Let the non-integer order initial value problem be:

𝐷𝛼
𝑡0 (𝑦) (𝑡) = 𝑓 (𝑡, 𝑦(𝑡)), 𝑡0 ≤ 𝑡 ≤ 𝑡 𝑓 . (3)

It is possible to transform the equation (3) into a Volterra’s integral with the weakly singular
nucleus (LI; TAO, 2009; DIETHELM; FREED, 1998), using the arbitrary order of the derivative
0 < 𝛼 ≤ 1:

𝑦(𝑡) = 𝑦0 +
1

Γ(𝛼)

∫ 𝑡

𝑡0

(𝑡 − 𝜏)𝛼−1 𝑓 (𝜏, 𝑦(𝜏)) 𝑑𝜏. (4)

So, the key to the derivation of the Adams-Bashforth-Moulton method to its fractional version is
to transform the original fractional differential equation (FDE) by a Volterra equation and implement
the integration method for the Volterra integral.

3.2 Fractional generalization
In order to propose the fractional generalization for the classical SAIRD model of system (1)

equation, we must be careful with the unbalance of the dimensions of the units of the differential
equation. When we introduce the derivative of non-integer order as the operator:

𝑑𝛽

𝑑𝑡𝛽
,

with 0 < 𝛽 ≤ 1, which is the non-integer order. When 𝛽 = 1 we obtain the classical derivative as a
particular case of the fractional operator. In the case of the integer order derivative, the operator has
dimension of the inverse of days, 1

days , since in our particular case of COVID-19 dynamic modeling
we analyze the data in periods of days, but in the fractional operator we have that[ 𝑑𝛽

𝑑𝑡𝛽

]
=

1
days𝛽

, 0 < 𝛽 ≤ 1.

It is noteworthy that in this work we use [ ] as the notation for the unit of measure.
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To maintain consistency with dimensionality, we can introduce a new parameter 𝜏, where
[𝜏] = days, so that: [ 1

𝜏1−𝛽
𝑑𝛽

𝑑𝑡𝛽

]
=

1
days

=

( 1
days

)1−𝛽
×
( 1
days

) 𝛽
=

1
days

. (5)

In the equation (5) if 𝛽 = 1, the classical model is recovered. Therefore, we can perform the
fractional generalization of the (1) model, dimensionally adjusting the fractional operator adding the
parameter 𝜏:

𝑑

𝑑𝑡
→ 1

𝜏1−𝛽
𝑑𝛽

𝑑 𝑡𝛽
, 0 < 𝛽 ≤ 1, (6)

Therefore, the fractional version of the ODE system (2) is given by

𝑑𝛽 𝑆
𝑑 𝑡𝛽

= 𝜏1−𝛽 (−𝑟1 𝑆 𝐴 − 𝑟2 𝑆 𝐼)
𝑑𝛽 𝐴
𝑑 𝑡𝛽

= 𝜏1−𝛽 (𝑟1 𝑆 𝐴 + 𝑟2 𝑆 𝐼 − −𝛼1 𝐴),
𝑑𝛽 𝐼
𝑑 𝑡𝛽

= 𝜏1−𝛽 ((𝛼1 − 𝑎1) 𝐴 − 𝛼2 𝐼),

𝑑𝛽 𝑅
𝑑 𝑡𝛽

= 𝜏1−𝛽 (𝑎1 𝐴 +
(
𝛼2 − 𝑚

𝛼1 𝛼2
𝛼1−𝑎1

)
𝐼),

𝑑𝛽 𝐷
𝑑 𝑡𝛽

= 𝜏1−𝛽
(
𝑚

𝛼1 𝛼2
𝛼1−𝑎1

𝐼

)
.

(7)

In the next section, we propose different assumptions and strategies to fit both the classical
SAIRD model and its fractional version to reported data of COVID-19 cases and deaths. Then, we
compared the fitting result and the accuracy of the models.

4 Computational strategies
In the classic model (2), it is necessary to estimate three model parameters: 𝑎1, the recovery

rate for asymptomatic individuals, 𝑟1, the infection rate for asymptomatic individuals, and 𝑟2, the
infection rate for symptomatic individuals. In addition of these parameters, we can consider the two
initial conditions 𝑆0 and 𝐴0 as parameters to be estimated.

In the classical computational strategy A, we considered that symptomatic individuals isolate
themselves and, therefore, they do not transmit the disease, 𝑟2 = 0. As result, the vector of optimal
parameters is 𝑝∗ = [𝑆0, 𝐸0, 𝑎1, 𝑟1].In the classical computational strategy B, we will use the 𝑟2 ≠ 0,
so the vector of optimal parameters in this strategy is given by 𝑝∗ = [𝑆0, 𝐸0, 𝑎1, 𝑟1, 𝑟2].

When we consider the fractional model (7), besides the parameters 𝑆0, 𝐴0, 𝑎1, 𝑟1 and 𝑟2, it is
necessary to estimate the non-integer order of the derivative, 𝛽. Thus, for this case, we propose four
computational strategies: 𝐴1 and 𝐴2, what vary 𝛽 in fixed sizes or consider it as a parameter to be
estimated, respectively. In both strategies we assume that 𝑟2 = 0.

In strategies 𝐵1 and 𝐵2, we vary 𝛽 in fixed sizes or consider it as a parameter to be estimated,
respectively. However, now, in both strategies we consider 𝑟2 ≤ 0, as parameter to be estimated.
And all estimations are made by the Levenberg-Marquardt algorithm using the lqnonlin function in
MatLab minimizing the mean squared error (MSE), given by:

𝑀𝑆𝐸 =

𝑛∑︁
𝑖=1

1
𝑛
(𝐶 (𝑖)data − 𝐶 (𝑖)estimated)2 + (𝐷 (𝑖)data − 𝐷 (𝑖)estimated)2, (8)
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considering 𝐶 (𝑖)data and 𝐷 (𝑖)data as the data of cumulative COVID-19 cases and deaths. 𝐶 (𝑖)estimated
and 𝐷 (𝑖)estimated as the estimated curve of cumulative cases and deaths.

Table 2 summarizes the computational strategies that we used, what is assumed in each one of
them and which parameters are estimated.

Table 2: Computational Strategies used in this work
Strategy Model Assumption Estimated parameters (𝑝∗)

𝐴 Classic 𝑟2 = 0 [𝑆0, 𝐴0, 𝑎1, 𝑟1]
𝐵 Classic 𝑟2 ≠ 0 [𝑆0, 𝐴0, 𝑎1, 𝑟1]
𝐴1 Fractional 𝑟2 = 0 and fixed 𝛽 [𝑆0, 𝐴0, 𝑎1, 𝑟1, 𝜏]
𝐴2 Fractional 𝑟2 = 0 and estimated 𝛽 [𝑆0, 𝐴0, 𝑎1, 𝑟1, 𝜏, 𝛽]
𝐵1 Fractional 𝑟2 ≠ 0 and fixed 𝛽 [𝑆0, 𝐴0, 𝑎1, 𝑟1, 𝑟2, 𝜏]
𝐴2 Fractional 𝑟2 ≠ 0 and estimated 𝛽 [𝑆0, 𝐴0, 𝑎1, 𝑟1, 𝑟2, 𝜏, 𝛽]

5 Results
The pandemic scenario in Brazil was analyzed in each computational strategy considering data

for the months of April and May, 2020 (COTA, 2020). In those months, we considered the following
initial conditions: 𝐼0 = 6609, 𝑅0 = 78, 𝐷0 = 244 and 𝐶0 = 6931.

5.1 Classical computational strategy A
In computational strategy A, the vector of optimal parameters is 𝑝∗ = [𝑆0, 𝐸0, 𝑎1, 𝑟1], consid-

ering the rate of infection by symptomatic individuals, 𝑟2 = 0.
Table 3 shows the parameter ranges that were used during the estimation. Also, the vector of

initial values for parameters is given by

𝑝0 = [190 × 106, 15 × 103, 0.15, 11 × 10−8] .

As can be seen in Figure 2, we were able to achieve a reasonable fitting using this strategy.

Table 3: Range of parameters and initial conditions used for the simulation from April to May 2020.
Parameter Range

𝑆0 [170 × 106, 209 × 106]
𝐴0 [1 × 103, 6 × 105]
𝑎1 [0.14, 0.20]
𝑟1 [1 × 10−9, 12 × 10−8]
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Figure 2: Comparison between real data on cases and deaths because of COVID-19 and the estimation
made by the authors in the classical SAIRD model, in the strategy 𝐴.

In the classical computational strategy A we obtained a mean squared error of 4.29 × 108.

5.2 Classical computational strategy B
In the computational strategy B, we used 𝑟2 ≠ 0, considering the rate of infection by symptomatic

individuals as a parameter to be estimated. Therefore, the vector of optimal parameters in this strategy
is 𝑝∗ = [𝑆0, 𝐸0, 𝑎1, 𝑟1, 𝑟2], and their estimation was performed using the ranges presented in Table 3
and the range [0, 12 × 10−8] days−1 for 𝑟2. Moreover, the initial value of the parameters vector that
was used by the optimization method was 𝑝0 = [190 × 106, 15 × 103, 0.15, 11 × 10−8, 1 × 10−14] .

In this case, shown in Figure 3, the MSE was 4.32 × 108, resulting in a worse fitting than in the
previous strategy, with 6.99% difference.

Figure 3: Comparison between real data on cases and deaths because of COVID-19 and the estimation
made by the authors in the classical SAIRD model, in the 𝐵 strategy.

5.3 Fractional computational strategy 𝐴1

In the fractional strategy 𝐴1 varying the value of 𝛽 from 1 to 0.984, because for values below this
threshold, according to our estimations, the mean squared error value started increasing regardless
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the fitting process. The result of the optimization algorithm can be seen in Table 5, which contains
the values of 𝛽, the optimal parameter vector, 𝑝∗, and the obtained MSE for all the scenarios.

For the estimation in the strategy 𝐴1, where we vary the value of 𝛽, we use the following lower
and upper limits described in the table 5.3:

Table 4: Range of parameters and initial conditions used for the simulations from April to May 2020
in the computational strategy 𝐴1.

Parameter Range
𝑆0 [170 × 106, 209 × 106]
𝐴0 [1 × 103, 6 × 105]
𝑎1 [0.14, 0.20]
𝑟1 [1 × 10−9, 12 × 10−8]
𝜏 [0.1, 3]

For the vector of the initial values of the parameters, it was used

𝑝0 = [190 × 106, 15 × 103, 0.15, 11 × 10−8, 2.4] .

Table 5: Values of 𝛽 with their respective optimal parameter vectors and the mean squared error
obtained in the simulations.

𝛽 𝑝∗ MSE
1 [1.87 × 108, 1.40 × 104, 0.154, 1.44 × 10−9, 2.4] 4.29 × 108

0.998 [1.85 × 108, 1.46 × 104, 0.153, 1.44 × 10−9, 1.95] 3.89 × 108

0.996 [1.83 × 108, 1.77 × 104, 0.155, 1.43 × 10−9, 1.69] 3.02 × 108

0.994 [1.83 × 108, 1.77 × 104, 0.154, 1.43 × 10−9, 2.06] 2.95 × 108

0.992 [1.83 × 108, 1.79 × 104, 0.154, 1.43 × 10−9, 2.05] 2.71 × 108

0.990 [1.83 × 108, 1.81 × 104, 0.154, 1.43 × 10−9, 2.05] 2.5 × 108

0.988 [1.86 × 108, 1.55 × 104, 0.153, 1.43 × 10−9, 2.13] 3.41 × 108

0.986 [1.83 × 108, 1.59 × 104, 0.153, 1.43 × 10−9, 2.1] 3.25 × 108

0.984 [1.87 × 108, 1.49 × 104, 0.154, 1.43 × 10−9, 2.17] 3.19 × 108

We can observe from Table 5, that the simulation where 𝛽 = 0.990 was the one that fitted better
to the real data, obtaining a mean square error of 2.5× 108, lower than the other values.Thus, Figure
4 shows the estimated curves of cumulative cases and deaths by COVID-19 using the strategy 𝐴1,
with 𝛽 = 0.99.

5.4 Fractional computational strategy 𝐴2

In the strategy 𝐴2, we wanted to estimate of the non-integer order of the derivative, 𝛽. In this
case, as its initial value, we used the best estimated value obtained in the strategy 𝐴1, which was
𝛽 = 0.99. Therefore, the vector of initial values used in the optimization method is

𝑝0 = [190 × 106, 15 × 103, 0.15, 11 × 10−8, 2.4, 0.99] .

In this strategy 𝐴2, the MSE was 2.32 × 108. We can say that there were no very noticeable
differences in the final result, nor in the mean squared error in using any of the strategies 𝐴1 or 𝐴2,
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Figure 4: Comparison between real data on cases and deaths because of COVID-19 and the estimation
made by the authors in the fractional SAIRD model, in the 𝐴1 strategy, using 𝛽 = 0.99.

i.e, fixing the non-integer order of the derivative or estimating the order of the derivative. Figure 5
displays the estimated curves of cumulative cases and deaths, respectively using the computational
strategy 𝐴2. The range of parameters was the same as the table 5 including the range of 𝛽,
𝛽 ∈ [0.98, 0.9999]

Figure 5: Comparison between real data on cases and deaths because of COVID-19 and the estimation
made by the authors in the fractional SAIRD model, in the 𝐴2 strategy, using 𝛽 = 0.9872.

5.5 Fractional computational strategy 𝐵1

In the 𝐵1 fractional estimation strategy, we consider the symptomatic infection rate as a parameter
to be estimated, i.e., 𝑟2 ≠ 0, in addition to the non-integer order of the derivative 𝛽 that is varied
with fixed step, ℎ = 0.002, from 1 to 0.984, because for values of 𝛽 below 0.984 the mean squared
error value increased much more than in the classic model.

Table 6 shows the values of 𝛽, the estimated parameter vector, 𝑝∗, and the obtained mean squared
error value, MSE, for this strategy 𝐵1.

We can see from Table 6 that the simulation in the strategy 𝐵1 where 𝛽 = 0.994 presented a better
fitting to the reported data, obtaining a mean square error of 6.13 × 107. We can also observe the
THEODORO, M. M.; VILCHES, T. N.; CAMARGO, R. F.; MANCERA, P. F. A. Fractional modeling of COVID-19 dynamics. C.Q.D. – Revista
Eletrônica Paulista de Matemática, Bauru, v. 22, n. 2, p. 197–210, set. 2022. Edição Brazilian Symposium on Fractional Calculus.
DOI: 10.21167/cqdv22n22022197210 Disponível em: www.fc.unesp.br/departamentos/matematica/revista-cqd

206



Table 6: Values of 𝛽 with their respective optimal parameter vectors and the mean square error
obtained in the simulations.

𝛽 𝑝∗ MSE
1 [1.87 × 108, 1.38 × 104, 0.155, 1.44 × 10−9, 2.7 × 10−14, 2.4] 4.32 × 108

0.998 [1.86 × 108, 1.6 × 104, 0.153, 1.42 × 10−9, 2.22 × 10−14, 2.14] 2.91 × 108

0.996 [1.84 × 108, 1.73 × 104, 0.155, 1.43 × 10−9, 2.59 × 10−14, 1.57] 3.20 × 108

0.994 [1.82 × 108, 2 × 104, 0.151, 1.42 × 10−9, 2.84 × 10−14, 1.94] 6.13 × 107

0.992 [1.87 × 108, 1.43 × 104, 0.153, 1.43 × 10−9, 2.43 × 10−14, 2.13] 5.04 × 108

0.99 [1.83 × 108, 1.81 × 104, 0.154, 1.43 × 10−9, 2.34 × 10−14, 2.05] 2.50 × 108

0.988 [1.86 × 108, 1.55 × 104, 0.153, 1.43 × 10−9, 2.86 × 10−14, 2.13] 3.41 × 108

0.986 [1.88 × 108, 1.46 × 104, 0.152, 1.43 × 10−9, 2.84 × 10−14, 2.23] 3.02 × 108

0.984 [1.86 × 108, 1.61 × 104, 0.153, 1.43 × 10−9, 2.38 × 10−14, 2.14] 3.08 × 108

accuracy of this strategy in Figure 6, where we have the cumulative cases and deaths by COVID-19
using the strategy 𝐵1, with 𝛽 = 0.994.

Figure 6: Comparison between real data on cases and deaths because of COVID-19 and the estimation
made by the authors in the fractional SAIRD model, in the 𝐵1 strategy, using 𝛽 = 0.994.

5.6 Fractional computational strategy 𝐵2

The strategy 𝐵2 was, analogous to 𝐴2, performed using the derivative order as a parameter to be
estimated. As initial value for 𝛽, we used the best result of strategy 𝐵1, as before. Therefore, the
vector of initial values of the parameters is

𝑝0 = [190 × 106, 15 × 103, 0.15, 11 × 10−8, 1 × 10−14, 2.4, 0.994] .

With this computational strategy we obtained a MSE of 2.797 × 108, which is close to those
obtained in the Table 6, but higher than the smallest error obtained by the strategy 𝐵1.It can be
concluded that within strategy 𝐵, the strategy 𝐵1 obtained a smaller error regarding the available
data on cumulative cases and deaths than the 𝐵2 strategy, where the order of the non-integer derivative
was estimated. We can see in Figure 7 the cumulative cases and deaths by COVID-19 using the
strategy 𝐵2
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Figure 7: Comparison between real data on cases and deaths because of COVID-19 and the estimation
made by the authors in the fractional SAIRD model, in the 𝐵2 strategy, using 𝛽 = 0.9912.

6 Conclusion
In (CHICCHI et al., 2020), the model (2) was used both in the classic model and in the fractional

generalization, the present work tried to use this same classic model, but for the fractional general-
ization we performed the dimensional adjustment through the parameter 𝜏 to maintain consistency
with dimensionality in the fractional differential equation. In this way, we estimate the redimension-
alization parameter, 𝜏, together with the other model parameters and the non-integer order of the
derivative in the case of the strategies 𝐴2 and 𝐵2.

In this same work (CHICCHI et al., 2020), the authors performed the comparison analysis
between the classic and fractional SAIRD model through the RMSE (root mean squared error). In
our work we use a comparison measure similar to the RMSE, which also evaluates the difference
between an estimator and the true value of the estimated quantity, which is the MSE (mean squared
error).

From the numerical simulations, an analysis was performed by comparing the order of the
derivative and the mean square error produced between the estimated curve and available data on
cumulative cases and deaths from COVID-19. Through all simulations and comparisons, it was
possible to observe that in the fractional model the estimated curves came closer to the reported data
(COTA, 2020). Furthermore, although we subdivided the computational strategies between fixing
and estimating the order of the derivative, there was no significant change in the mean square errors
obtained among the fractional strategies.

The importance of the present work is to carry out a numerical analysis through comparisons
between the classical model and its fractional generalizations with the main objective of trying to
embed the effects of simplifications in the models in the non-integer order of the derivative.
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