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Abstract

We present a new type of implicit fractional linear multi-step
method (FLMM) of order two for fractional initial value prob-
lems. The method is obtained from the second order super
convergence of the Griinwald-Letnikov form of the fractional
derivative at a non-integer shift point in the domain. The pro-
posed method coincides with the classical BDF method of order
two for ordinary initial value problems when the fractional or-
der of the derivative is one. The weight coefficients of the
proposed method are obtained from the Griinwald weights and
hence computationally efficient compared with the fractional
backward difference formula of order two (FBDF2). The sta-
bility region of the FLMM is larger than that of the fractional
Adams-Moulton method of order two and the fractional trape-
zoidal method, and is very much closer in size to the FBDF2.
Numerical result and illustrations are presented to justify the
claims.
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1 Introduction

Consider the fractional initial value problem (FIVP)

CDPy(t) = f(t,y(t)), >0, 0<B<I, (1a)
y(0) = yo, (Ib)

where ng is the left Caputo fractional derivative operator defined in Section 2, f(¢,y) is a source
function satisfying the Lipschitz condition in the second argument y guaranteeing a unique solution
to the problem (DIETHELM, 2010).

Fractional calculus and fractional differential equations, despite their long history, have only
recently gained places in science, engineering, artificial intelligence and many other fields.

Many numerical methods have been developed in the recent past for solving (1) approximately.
We are interested in the numerical methods of type commonly known as fractional liner multi-step
methods (FLMM).

The basic numerical method of FLMM type of order one for (1) is obtained from the Griinwald-
Letnikov form for the fractional derivative (PODLUBNY, 1999; OLDHAM; SPANIER, 1974). The
weight coefficients for this basic FLMM are the Griinwald weights obtained from the series of the
generating function (1 — z)#.

Lubich (LUBICH, 1985) introduced a set of higher order FLMMs as convolution quadratures
for the Volterra integral equation (VIE) obtained by reformulating (1) (See also eg. (DIETHELM,
2010)). The quadrature coefficients are obtained from the fractional order power of the rational
polynomial of the generating functions of linear multi-step method (LMM) for ordinary differential
equations (ODEs). As a particular subfamily of these FLMMs, the fractional backward difference
formulas (FBDFs) were also proposed by Lubich in (LUBICH, 1986). Other forms of FLMM are
the fractional trapezoidal method of order 2 and the fractional Adams methods.

In this work, we propose a second order implicit FLMM of a new type that does not come under
the above mentioned subfamilies of FLMMs. The weight coefficients of the method are obtained
from the simple Griinwald weights and has an improved stability region compared to the previously
known FLMMs of order 2.

2 Prelimineries

For a sufficiently smooth function y(¢) defined for r > 1y, the left Riemann-Liouville (RL)

fractional derivative of order 8 > 0 is defined by (see eg. (PODLUBNY, 1999))

1 m t
d YO e m-1<p<m, )

RL B
D =
w Diy(®) C(m - ) dx™ J,, (t—7)fml 7

where m = [B] — the smallest integer larger than or equal to .
The left Caputo fractional derivative of order 8 > 0 is defined as

C B _ 1 ! y(m)(T)
PO =TGR Sy Tp

dt,m—-1< B <m, 3)

where y™ is the m-th derivative of y.
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Often, for practical reasons, the integer ceiling m of the fractional order  is considered to be
one or two. In this paper, we investigate the case of 0 < § < 1 when m = 1. Further, there is no loss
in generality in the assumptions fy = 0 and y(0) =0

In addition to the above two definitions, the Griinwald-Letnikov(GL) definition is useful for
numerical approximations of fractional derivatives.

SLpPy(1) = lim Z gPy(1 - kh), 4)

B _ k_T(B+)
= D'rEmno

expansion of the Griinwald generating function W1(z) = (1 — 2)# = 330 0 g('g )2k The coefficients
can be successively computed by the recurrence relation

where g/ are the Griinwald weights and are the coefficients of the series

p+1
P =1, W= (I—ng(ﬁ)v k=1,2,--. o)

For theoretical purposes, the function y(7) is zero extended for r < 0 and hence the infinite
summation in the GL formulation (4). Practically, the upper limit of the sum is n = [¢/h], where -]
is the integer part function.

The three definitions in (2)—(4) are equivalent under homogeneous derivative conditions at the
initial point (PODLUBNY, 1999).

2.1 Numerical approximations of fractional derivatives

For numerical approximation of the fractional derivative, the GL definition is commonly used by
dropping the limit in (4) giving the Grunwald Approximation (GA) for a fixed step 4~ (OLDHAM;
SPANIER, 1974).

B (1) = hBZg“)y(r—kh). (6)

A more general Griinwald type approximation is given by the shifted Grunwald approximation
(SGA) (MEERSCHAERT; TADJERAN, 2004).

(1) = hﬁZg“” (1 = (k= r)h), )

where r is the shift parameter.

For an integer shift r, the SGA is of order one consistency (MEERSCHAERT; TADJERAN,
2004). However, it is shown in (NASIR; GUNAWARDANA; ABEYRATHNA, 2013) that the SGA
gives a second order approximation at a non-integer shift » = 8/2 displaying super convergence.

S 52y (D) = §EDIy (1) + O (h?). ©)

Some higher order Griinwald type approximations with shifts have been presented in (GU-
NARATHNA; NASIR; DAUNDASEKERA, 2019) with the weight coefficients obtained from some
generating functions in an explicit form according to the order and shift requirements.
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2.2 Fractional linear multi-step methods

Among the several numerical methods to solve (1), we list the numerical methods that fall under
the category of FLMM.

Lubich (LUBICH, 1986) presented and studied numerical approximation methods for the FIVP
(1) through some convolution quadrature for the equivalent Volterra integral equation of the FIVP.

An analogous equivalent formulation for the FIVP is also given in (GALEONE; GARRAPPA,
2008) in the classical LMM form

N n
D owhyie+ > wiPyui =i, )
k=0 k=0
B
where w,((ﬁ ) are the coefficients of the series expansion of the generating function w(¢) = ( (‘; ((11//‘?))

with (p, o) are the generating polynomials of the LMM for ODEs and wff ]3 are starting weights

to compensate the reduction of order of convergence for certain class of solution functions having
singular derivatives at the initial point.

This FLMM have some subclasses in the literature with generating functions of the following
general forms:

1. Fractional Trapezoidal rule: The fractional trapezoidal method of order 2 (FT2) obtained
from the trapezoidal rule for the ODE has the generating function

1-¢\
6]

Orr2(§) = (2

B
It is the only method known so far in the form §(¢) = (Zgg)

2. Fractional backward difference formula: The fractional backward difference formula
(FBDF) obtained from the BDF for ODE has the generating functions of the form §(¢) =

(a(€))”.
For orders 1 < m < 6, a set of 6 FDBFm methods have been obtained with polynomials
corresponding to the generating polynomials of the BDF of order m givenby a(¢) = X, %( 1-

o,

3. Fractional Adams methods: The fractional Adams methods have the generating functions of

the form §(¢) = (Z(é))ﬁ , where the polynomial a(¢) is one of the polynomials in FBDF methods
and g(¢) is determined to have a specified order of consistency for the method. Often, a(&) =
1 — ¢ (see (GALEONE; GARRAPPA, 2006),(GALEONE; GARRAPPA, 2008),(GALEONE;
GARRAPPA, 2009),(GARRAPPA, 2009)). However, other polynomials in the FBDF have
also appeared in the literature (BONAB; JAVIDI, 2020),(HERIS; JAVIDI, 2018).

When g = 0, the method is explicit and is called fractional Adams-Bashforth methods (FABs)
(GALEONE; GARRAPPA, 2009; GARRAPPA, 2009). o # 0 gives implicit methods called
fractional Adams-Moulton methods (FAMs).

4. Rational approximation: In (ACETO; MAGHERINI; NOVATI, 2015), a classical LMM
type of approximation is proposed to obtain a class of FLMMs by rational approximations of
the FBDF generating functions.
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3 A new form of FLMM

We present the main result of constructing a new FLMM of order 2.
The fractional derivative in (1a) is replaced by the super convergence approximation (8) of order
two. This gives att = ¢,

1 o0
Oy (1) = 75 kZ; Py (1 = (k= B/2)h) = f (s y(1)) + O(H). (10)

Since k — /2 is not integer for 0 < 8 < 1, the point t,, — (k—3/2) h is not aligned with the discrete
points of the computational domain {z,,, m = 0, 1, ..., N}. Replace it with an order 2 approximation
using points in the computational domain as follows:

y (tn - (k - 'g) h) = (1 + g) y(t, — kh) - ’gy(tn — (k= 1)h) + O(h?). (11)
Dropping the error term O(h?), choosing h = T/N,N € N and denoting t, = nh, 7y, ~
y(t,) and f, = f(t,;,yn), we obtain the new FLMM implicit approximation scheme

N B

The coefficients in the new FLMM (12) are linear expressions of the Griinwald weights g,((ﬁ ) and
thus does not involve any extra computations.

(1+§) yn_k—'gyn-k-l] =Wt n=12--. (12)

Theorem 1 The new FLMM in (12) is consistent with order 2 and has the generating function
5(&) = (1-6/p(&), (13)

where p(&) = (1 + g) - gf.

Remark: When a = 1, the new FLMM coincides with the BDF method of order 2 for ODE with
the generating polynomial p(t) = % -2+ %fz.

4 Numerical Tests

We used the proposed new FLMM to compute approximate solutions of the non-linear FIVP
DPy(t) = f(t.y), 0<t<1, 0<pB<I,
y(0) =0.

where

F(t.y) = reg+s) B _ 240
I'(B+5) I'(6-p)

The exact solution of the problems is given by y(f) = t2#** — 2¢°.

The problem was solved with fractional orders S = 0.4, 0.6 and 0.8. The computational domain
of the problem is {t, = n/M,n =0,1,--- , M} and step size h = 1/M, where M is the number of
subintervals of the problem domain [0, 1]. The problem was computed for M; = 2/, j=3,4,...,12.

The computational order of the method is computed by the formula

pjr1 =10g(Ejq/E;j)/log(hj1/h;)
where E;, h; are the Maximum error and the step size for the computational domain size M;.

Table 1 list the results obtained in the computations.
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B=04 B=0.6 B =0.8
M || Max. Error Order Max Error Order Max Error Order
8 1.698e-01 - 9.070e-02 7.835e-02 -

16 || 2.779e-02  2.61128 || 2.169e-02 2.06382 | 1.978e-02  1.98599
32 || 6.648e-03  2.06349 || 5.503e-03 1.97912 || 5.060e-03  1.96667
64 || 1.663e-03  1.99866 || 1.398e-03 1.97644 | 1.286e-03 1.97645
128 || 4.186e-04  1.99047 || 3.534e-04 198446 | 3.245e-04 1.98628
256 || 1.052e-04  1.99271 || 8.888e-05 1.99117 || 8.155e-05 1.99260
512 || 2.638e-05  1.99566 || 2.229e-05 1.99530 || 2.044e-05 1.99616
1024 || 6.605e-06  1.99764 | 5.583e-06 1.99758 || 5.117e-06 1.99804
2048 || 1.653e-06  1.99877 || 1.397e-06 1.99877 || 1.280e-06 1.99901
4096 || 4.133e-07 199938 || 3.494e-07 1.99938 | 3.202e-07 1.99950

Table 1: Computational order of the new FLMM

5 Stability regions and comparisons

For the analysis of stability of a FLMM, the analytical solution of the test problem
CDPy(t) = Ay(1), y(0) = yq is given by y(t) = Ep(AtP)yo, where Eg(-) is the the Mittag-Leffler

function
k

— X

The analytical solution y(¢) of the test problem is stable in the sense that it vanishes in the
Br-angled region

57(
where the angle Sr/2 is measured from the positive real axis of the complex plane. The analytical
unstable region is thus the infinite wedge with angle S complement to the analytical stability region
2g.
For the numerical stability of FLMM, we have the following criteria:

zﬁ={§ec:|arg<§>|>ﬁ }

Definition 1 Let S be the numerical stability region of a FLMM. For an angle «, define the wedge
S(a) ={z:|arg(z) — 7| < a},
where « is measured from the negative real axis of the complex plane. The FLMM is said to be
1. A(a)-stable if S(a) C S.
2. A-stable if itis A(w — Br/2) stable. That is, Xg C S.
3. unconditionally stable if it is A(0) stable. That is, the negative real line (—c0,0) C S.

In Figure 1, the unstable regions of the new FLMM for various values of § are given along with
their A-stable boundary lines. This shows that the new FLMM is A-stable for 0 < g < 1.

We compare the stability regions of previously established implicit FLMMs of order 2 with our
new FLMM (We call this NFLMM?2 in this section for want of an abbreviation).
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For this we consider the Lubich’s FBDF2 (LUBICH, 1986), the FAM1(GALEONE; GARRAPPA,
2008) and the fractional Trapezoidal rule (FT2) (LUBICH, 1986), (GARRAPPA, 2015) given by
their respective generating functions

3 1\ (1-&F
5FBDF2(§):(§_2§+§) , 5FAM1('f): (1_§)+§§
and 8
_(,1=¢
orr2(é) = (21 +§) .

3Unstable regions and A-Stability

Imaginary part

0 1 2 3 4
Real part of Stability condition

Figure 1: Unstable regions and A-stable boundaries for the new FLMM

It is known that the three methods are also A-stable (GALEONE; GARRAPPA, 2008; GAR-
RAPPA, 2015; LUBICH, 1986). Hence, they are competitive with the NFLMM?2 in this sense. Note
that the straight lines in the figures depicts the boundary of the stability region of the FT2 method
where the left side of the lines are the stability regions. Also note that these line correspond to the
boundary of the analytical stability region Xz as well.

The advantage of our NFLMM?2 is, in terms of the stability regions (SR), is that the SR of the
NFLMM?2 is larger than that of FAMI and is very much close to the SR of the FBDF2. Also, the
SR of the FT2 is smallest of all the other FLMMs having the largest unstable region.

The observation is confirmed by the relations of the longest points of the boundaries of the
unstable regions ( see also the figures in Figure 2 )

O0repr2(—1) < OnrFLMm2(=1) < dpami1(=1) < dpr2(—1) = +o0.

and, for |£| < 1, by the relations of the unstable regions

SreprF2 € SnFLmm1 € SFam1 C SFra. (15)
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Figure 2: Comparing the FLMMs of order 2

Another interesting observation is that, as 8 approaches 1, the SR of FAM1 shrinks to the SR of
FT2 while the SR of our NFLMM?2 enlarges to the SR of FBDF2.

As, for the computational efficiency, the weights w; of NFLMMs has the simplest computational
effort for the weight coefficients wy as they involve only a linear combinations the Griinwald
coefficients g,(f ), Obviously, the weights of FBDF2 requires computation by the Miller’s formula
with two previous weights.

The weights of FAMI1 can be computed with the same amount of computation as that of
NFLMM?2. However, the right hand side of FAMI requires two function values of f(z,y). The
weights of FT2 need more efforts as they require the first n coefficients of its generating function

and requires FFT to compute them (GARRAPPA, 2015).

6 Conclusion

We proposed a new type of FLMM of order 2 for FIVPs. The new FLMM is A-stable as the
other known order 2 FLMM methods. However, the proposed method outweighs the other methods
in terms of stability regions and computational cost.
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