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Abstract
The present study seeks to understand the forced oscillations
through modeling via fractional differential equation, using the
derivative according to Hilfer and representing the external
force as a succession of delta Dirac functions. This formula-
tion allows recovering the solutions according to Caputo and
Riemann-Liouville. The results obtained show that both Ca-
puto and Riemann-Liouville solutions coincide when we re-
cover the entire order of the derivative. Also, by switching the
order of the derivative it is possible to simulate damping.
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1 Introduction
When a body of mass𝑚 performs a periodic movement around a fixed point this movement is said

to be oscillatory. A special type of oscillatory movement is the harmonic movement. The movements
are placed in this classification oscillators in which the acceleration and the resulting force acting on
the body are proportional and opposite to its displacement (simple harmonic movement, SHM, in
short). Separate the study in other cases: the oscillations with damping (when harmonic movement
occurs in the presence of friction window) and forced oscillations (when the system oscillates under
the action of a periodic external force), or rather, “oscillator receives energy from the external force
at which it is subjected and dissipates an amount of energy due to the existence of the friction
force"(DINIZ, 2019). Unlike the present study, in (NUSSENZVEIG, 2013, p.120) the 𝑥(𝑡) function
in the SHM is determined from the analysis of the energy conservation associated with the spring-
mass system, since “a total energy 𝐸 remains constant, oscillating between the kinetic form and the
potential form" (NUSSENZVEIG, 2013, p.121).

To understand this dynamics it’s necessary to equate the dimensions acting on the particle and
determine the time function of the displacement from its initial conditions of position and velocity.
In general, this process is carried out by solving an ordinary differential equation. In other words,
applying Newton’s second law to the description of the movement of a body, it is possible to obtain
a time-dependent analytical expression for such quantities (displacement, natural frequency of the
oscillator, period of oscillation, etc.).

Furthermore, this modeling is done using integer-order derivative operators, that is, d
d𝑡 and

d2

d𝑡2 . With regard to the harmonic oscillator, the modeling occurs through a second order ordinary
differential equation with constant coefficients, according to the following equation:

𝑚
d2𝑥(𝑡)

d𝑡2
+ 𝛽d𝑥(𝑡)

d𝑡
+ 𝑘𝑥(𝑡) = 0, (1)

where 𝑚 represents the mass in 𝑘𝑔, 𝛽 is the damping coefficient in 𝑘𝑔/𝑠, 𝑘 the spring constant in
𝑁/𝑚 and 𝑥 is the displacement of the oscillator relative to its position of balance.

Fractional calculus (FC) makes it possible to “replace integer-order derivatives by non-integer
order derivatives, generally with order less than or equal to the order of the original derivatives, so
that the usual solution can be retrieved as a particular case" (THEODORO; CAMARGO, 2020).
It is important to highlight that “the fractional operator reflects intrinsic dissipative processes that
are complicated enough by nature" (STANISLAVSKY, 2006), but this relationship is not yet fully
specified.

While in integer order calculus (sometimes called classical calculus) there is a consensus on
the definition of derivative and integral operators, in FC there is no single formulation of these
operators. Also, each formulation can be better suited to a specific physical context. There are
several formulations for the fractional derivative, some few of them are Riemann-Liouville, Caputo,
Grn̈wald-Letnikov, Weyl and Hilfer.

Therefore, the study of oscillators in FC is performed by solving a fractional differential equation,
that is, differential equation whose derivative operator can takes a non-integer order. Following this
line of research, this work aims to study the forced oscillator by a periodic external force via Hilfer
fractional derivative. We also study the curves that describe the solutions found when the order of
the derivative is changed.

Regarding the methodology, the inverse Laplace transform will be used to find a solution of the
fractional differential equation for the forced oscillator. However, first it is essential to present the
formulation and demonstrate some results. More precisely, we will first present the Mittag-Leffler
MELO, S. S. C.; OLIVEIRA, E. C. A study of forced oscillations via Hilfer fractional derivative. C.Q.D. – Revista Eletrônica Paulista de
Matemática, Bauru, v. 22, n. 2, p. 264–274, set. 2022. Edição Brazilian Symposium on Fractional Calculus.
DOI: 10.21167/cqdv22n22022264274 Disponível em: www.fc.unesp.br/departamentos/matematica/revista-cqd

265



function that plays an important role in FC, similar to the exponential function in classical calculus.
Then, the Riemann-Liouville fractional integral will be defined, as well as the Riemann-Liouville
fractional derivative, Caputo and, finally, Hilfer formulation (which recovers both). At the end of the
work, the inverse Laplace transform methodology will be used to find the solution of the fractional
differential equation describing the fractional forced oscillator.

2 Mittag-Leffler function
Just as in classical calculus a solution of many ordinary differential equation is expressed in

terms of exponential function, in FC the Mittag-Leffler function plays the same role. In addition,
to generalizing the exponential function, this function have interesting properties related to the
fractional derivative operator. It is worth noting that several generalizations of Mittag-Leffler
function have been proposed. In this work, we use only the Mittag-Leffler functions of one and two
parameters. Another importante function is the three-parameter Mittag-Leffler function as proposed
by Prabhakar in 1971 (PRABHAKAR, 1971).

Definition 2.1 Let 𝐸𝛼,𝛽 (𝑧) be a complex function with two complex parameters 𝛼 and 𝛽, with
𝑅𝑒(𝛼) > 0 and 𝛽 ∈ C such that

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑛=1

𝑧𝑛

Γ (𝛼𝑧 + 𝛽) . (2)

with 𝐸𝛼,𝛽 (·) a Mittag-Leffler function with two parameters and Γ is the gamma function, while for
𝛽 = 1 we obtain the classical Mittag-Leffer function with one parameter, denoted by 𝐸𝛼 (·).

The condition 𝑅𝑒(𝛼) > 0 ensures that the series 𝐸𝛼,𝛽 (·) converges (OLIVEIRA, 2019). For
𝑅𝑒(𝛼) < 0 the series diverges and for 𝑅𝑒(𝛼) = 0, |𝑧 | < 1 we have the well-known geometric series,
that is, 𝐸0(𝑧) = 1

1−𝑧 .
Some particular cases stand out:

𝐸1,1(𝑧) =
∞∑︁
𝑛=1

𝑧𝑛

Γ(𝑛 + 1) =

∞∑︁
𝑛=1

𝑧𝑛

𝑛!
= 𝑒𝑧

𝐸2,1(−𝑧2) =
∞∑︁
𝑛=1

(−1)𝑛 𝑧2𝑛

Γ(2𝑛 + 1) =

∞∑︁
𝑛=1

(−1)𝑛 𝑧2𝑛

(2𝑛)! = cos(𝑧)

𝐸2,2(−𝑧2) =
∞∑︁
𝑛=1

(−1)𝑛 𝑧2𝑛

Γ(2𝑛 + 2) =

∑∞
𝑛=1(−1)𝑛 𝑧2𝑛+1

(2𝑛+1)!
𝑧

=
sin(𝑧)
𝑧

.

(3)

Theorem 2.1 Let 𝑡 ∈ R and 𝑎 a real constant. We have

𝑡𝛽−1𝐸𝛼,𝛽 {±𝑎𝑡𝛼} ÷
1
𝑠𝛽

𝑠𝛼

(𝑠𝛼 ∓ 𝑎) , (4)

for 𝛼 > 0 and 𝛽 > 0. The symbol ÷ in this context means that the first member is the inverse Laplace
transform of the second member.
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Proof. To prove the result, we first take the Laplace transform, obtaining

L[𝑡𝛽−1𝐸𝛼,𝛽 (±𝑎𝑡𝛼)] =
∫ ∞

0
𝑒−𝑠𝑡𝑡𝛽−1

∞∑︁
0

(±𝑎𝑡𝛼)𝑛

Γ (𝛼𝑛 + 𝛽)d𝑡 =
∞∑︁
𝑛=0

(±𝑎)𝑛

Γ (𝛼𝑛 + 𝛽)

∫ ∞

0
𝑡𝛼𝑛+𝛽−1𝑒−𝑠𝑡d𝑡.

Introducing a change 𝑦 = 𝑠𝑡, implies that:

=

∞∑︁
𝑛=0

1
𝑠𝛽

(±𝑎)𝑛

Γ (𝛼𝑛 + 𝛽)
1
𝑠𝛼𝑛

∫ ∞

0
𝑒−𝑦𝑦𝛼𝑛+𝛽−1d𝑦,

with the integral appearing in the second member being a gamma function. So, we have

L[𝑡𝛽−1𝐸𝛼,𝛽 (±𝑎𝑡𝛼)] =
1
𝑠𝛽

∞∑︁
𝑛=0

(±𝑎)𝑛

Γ (𝛼𝑛 + 𝛽) 𝑠𝛼𝑛Γ(𝛼𝑛 + 𝛽) =
1
𝑠𝛽

∞∑︁
𝑛=0

(
± 𝑎
𝑠𝛼

)𝑛
.

Besides, for
�� 𝑎
𝑠𝛼

�� < 1 a convergent geometric series is obtained. Therefore,

L[𝑡𝛽−1𝐸𝛼,𝛽 (±𝑎𝑡𝛼)] =
1
𝑠𝛽

1
1 ∓ 𝑎

𝑠𝛼

=
1
𝑠𝛽

𝑠𝛼

(𝑠𝛼 ∓ 𝑎) ,

which concludes the result.

3 Fractional derivatives
In this section, before we present fractional derivatives, we discuss the Riemann-Liouville

fractional integral. Only three types of fractional derivatives are presented.

3.1 Riemann-Liouville fractional integral
In order to define the formulations of fractional derivatives, the Riemann Liouville fractional

integral must first be well defined.

Definition 3.1 The Riemann-Liouville fractional integral of order 𝛼 of a function 𝑓 is given by,

𝐼𝛼 𝑓 (𝑡) = 1
Γ(𝛼)

∫ 𝑡

0
𝑓 (𝜏) (𝑡 − 𝜏)𝛼−1 d𝜏, (5)

with 𝑅𝑒(𝛼) > 0.

This integral can also be understood as a Laplace convolution product of the 𝑓 function with a
Gel’fand-Shilov function (TEODORO; OLIVEIRA, 2017).

3.2 Riemann-Liouville fractional derivative
Definition 3.2 Let 𝛼 be a complex number such that 𝑅𝑒(𝛼) and 𝑛 the smallest integer greater than
𝑅𝑒(𝛼), thus 𝑛 − 1 < 𝑅𝑒(𝛼) ≤ 𝑛. The Riemann-Liouville fractional derivative of a sufficiently
well-behaved function 𝑓 is given by,

𝐷𝛼 𝑓 (𝑡) = d𝑛

d𝑡𝑛
𝐼𝑛−𝛼 𝑓 (𝑡) = 1

Γ(𝑛 − 𝛼)
d𝑛

d𝑡𝑛

∫ 𝑡

0

𝑓 (𝜏)
(𝑡 − 𝜏)𝛼−𝑛+1 d𝜏. (6)
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3.3 Caputo fraciontal derivative
Definition 3.3 Let 𝑇 , 𝛼 ∈ R+ and 𝑛 = min {𝑘 ∈ N/𝑘 ≥ 𝛼}. Caputo fractional derivative on the left,
of a function 𝑓 is defined as

𝐶𝐷𝛼
0+ 𝑓 (𝑡) =

{
1

Γ(𝑛−𝛼)
∫ 𝑡

0 (𝑡 − 𝜏)𝑛−1−𝛼 𝑓 (𝑛) (𝜏)d𝜏, 𝑛 − 1 < 𝛼 < 𝑛
𝑓 (𝑛) (𝑡), , 𝑛 = 𝛼.

(7)

It is important to note that, differently to the Riemann-Liouville fractional derivative, the Caputo
fractional derivative of a constant 𝐾 is 𝐶𝐷𝛼

0+𝐾 = 0.

3.4 Hilfer fractional derivative
Historically, the formulation of the derivative according to Hilfer, or just Hilfer fractional deriva-

tive, can be considered recent. This derivative recovers, for particular values of parameters, Riemann-
Liouville and Caputo fractional derivatives, and the so-called Weyl derivative, also.

Definition 3.4 Let 𝑛 − 1 < 𝛾 < 𝑛, with 𝑛 ∈ N and Λ = [𝑎, 𝑏] a closed interval −∞ ≤ 𝑎 < 𝑏 ≤ +∞,
𝑡 ∈ Λ and 𝑥 ∈ 𝐶𝑚 (Λ,R). The Hilfer fractional operator, denoted by 𝐻𝐷

𝛾,𝜇

𝑎+ of order 𝛾 and type 𝜇
with 0 ≤ 𝜇 ≤ 1 is given by

𝐻𝐷
𝛾,𝜇

𝑎+ = 𝐼
𝜇(𝑛−𝛾)
𝑎+

(
d
d𝑡

)𝑛
𝐼
(1−𝜇) (𝑛−𝛾)
𝑎+ 𝑥(𝑡), (8)

where 𝐼𝜇
𝑎+ is the Riemann-Liouville fractional integral.

Note that for 𝜇 = 0 the derivative according to Riemann-Liouville is retrieved while for 𝜇 = 1 the
derivative according to Caputo is retrieved.

Theorem 3.1 The Laplace transform of a Hilfer fractional derivative of order 0 < 𝛼 ≤ 1 and type
0 ≤ 𝜇 ≤ 1 is given by

L
[
𝐻𝐷

𝛼,𝜇

0+ 𝑓 (𝑡)
]
= 𝑠𝛼𝐹 (𝑠) − 𝑠𝜇(𝛼−1) 𝐼 (1−𝜇) (1−𝛼)0+ 𝑓 (0+), (9)

where 𝐼 (1−𝜇) (1−𝛼)0+ 𝑓 (0+) = lim𝑡→0+ 𝐼
(1−𝜇) (1−𝛼)
0+ 𝑓 (𝑡). On the other hand, for the order 1 < 𝛾 ≤ 2 the

result is

L
[
𝐻𝐷

𝛾,𝜇

0+ 𝑥(𝑡)
]
= 𝑠𝛾𝐹 (𝑠) − 𝑠𝜇(𝛾−2) 𝐼 (1−𝜇) (2−𝛾)−1

0+ 𝑓 (𝑡) |𝑡=0 − 𝑠1+𝜇(𝛾−2) 𝐼 (1−𝜇) (2−𝛾)0+ 𝑓 (𝑡) |𝑡=0. (10)

Proof. Taking the Laplace transform on both sides, we get

L
[
𝐻𝐷

𝛼,𝜇

0+ 𝑓 (𝑡)
]
= L

[
𝐼
𝜇(1−𝛼)
0+

d
d𝑡
𝐼
(1−𝜇) (1−𝛼)
0+ 𝑓 (𝑡)

]
, (11)

with 𝐴(𝑡) = d
d𝑡 𝐼

(1−𝜇) (1−𝛼)
0+ 𝑓 (𝑡). Remembering the Laplace transform of an integral, we have

L
[
𝐼
𝜇(1−𝛼)
0+ (𝐴(𝑡))

]
=
L [𝐴(𝑡)]
𝑠𝜇(1−𝛼)

, (12)
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and for the derivative, we obtain

L [𝐴(𝑡)] = L
[

d
d𝑡

(
𝐼
(1−𝜇) (1−𝛼)
0+ 𝑓 (𝑡)

)]
= 𝑠L

[
𝐼
(1−𝜇) (1−𝛼)
0+ 𝑓 (𝑡)

]
− 𝐼 (1−𝜇) (1−𝛼)0+ 𝑓 (0+). (13)

Also, again using the Laplace transform of an integral, one can write

L
[
𝐼
(1−𝜇) (1−𝛼)
0+ 𝑓 (𝑡)

]
=

𝐹 (𝑠)
𝑠(1−𝜇) (1−𝛼)

. (14)

Replacing the expressions (13) and (14) in the equation (12), implies

L
[
𝐻𝐷

𝛼,𝜇

0+ 𝑓 (𝑡)
]
= 𝑠𝛼𝐹 (𝑠) − 𝑠𝜇(𝛼−1) 𝐼 (1−𝜇) (1−𝛼)0+ 𝑓 (0+). (15)

The reasoning above permits to find the expression for the Laplace transform in the case 1 < 𝛾 ≤ 2
and the same type 0 < 𝜇 < 1. So, we have (TOMOVSKI; HILFER; SRIVASTAVA, 2010)

L
[
𝐻𝐷

𝛾,𝜇

0+ 𝑥(𝑡)
]
= 𝑠𝛾𝐹 (𝑠) − 𝑠𝜇(𝛾−2) 𝐼 (1−𝜇) (2−𝛾)−1

0+ 𝑓 (𝑡) |𝑡=0 − 𝑠1+𝜇(𝛾−2) 𝐼 (1−𝜇) (2−𝛾)0+ 𝑓 (𝑡) |𝑡=0. (16)

4 Forced oscillations
Traditionally to illustrate the simple harmonic oscillator, a spring-mass system, that moves freely

with the kinetic energy being conserved during the movement is used. Eq.(1) occurs when 𝛽 = 0,
that is, when there is no damping term.

Although, a big issue that arises when dealing with arbitrary order derivative operators is the
interpretation of the units of measure referring to the operators. This can be verified in (GÓMEZ-
AGUILAR et al., 2012) where an arbitrary parameter 𝜎 of temporal dimension (second unit of
measure) is introduced to ensure that all quantities have their dimensions adjusted according to the
order 𝛾 allowing, thus, study the behavior of solutions for intermediate values of 𝛾. Thus,

d
d𝑡

→ 1
𝜎1−𝛾

d𝛾

d𝑡𝛾
,

still in (GÓMEZ-AGUILAR et al., 2012) this derivative operator refers to Caputo’s formulation.
The same strategy will be used here, but for Hilfer’s formulation. The Eq.(1) can be written as

𝑚

𝜎2−𝛾
𝐻𝐷

𝛾,𝜇

0+ (𝑥 (𝑡)) + 𝛽

𝜎1−𝛼
𝐻𝐷

𝛼,𝜇

0+ (𝑥 (𝑡)) + 𝑘𝑥(𝑡) = 0, (17)

where 0 < 𝛼 ≤ 1, 1 < 𝛾 ≤ 2 and 0 ≤ 𝜇 ≤ 1.
However, the second member zero indicates that there are no external forces adding energy to

the system. For forced oscillations, a periodic function must be added in second member of Eq.(1).
It is important to cite interesting fractional forced oscillator approaches, such as (ŁABĘDZKI;

PAWLIKOWSKI; RADOWICZ, 2019). In this work the authors use a function 𝑓 (𝑡) = 𝐴 sin(𝜔0𝑡)
describing oscillating excitation (external charge), where 𝐴 is the amplitude and 𝜔0 is the external
load frequency. Moreover, in this work they use the Riemann-Liouville fractional derivative in order
to understand vibrations in continuous structures of viscoelastic materials. A similar approach is
found in (CHUNG; JUNG, 2014), where the driving force is expressed in terms of a Mittag-Leffler
cosine function, but using the Caputo fractional derivative.
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In (PAROVIK, 2020) a corresponding numerical study is carried out using the Caputo fractional
derivative. From the finite difference method to solve equations and other numerical methods to
build oscillograms and phase trajectories in order to understand these solutions, the study provides
further evidence that the order of the derivative is responsible for the intensity of energy dissipation
in fractional vibrational systems.

Thus, in this study the external force will also be modeled as a periodic function as in
(ŁABĘDZKI; PAWLIKOWSKI; RADOWICZ, 2019) and (PAROVIK, 2020). For this, the idea
presented in the (DUTRA; RIBEIRO; PORTO, 2018) will be used. More precisely, the situation
is illustrated as follows: a child being periodically propelled on a swing. To describe the external
force that provokes this succession of impulses of same magnitude it is important to comment on a
particular distribution, the so-called Dirac comb. Let 𝐽0 be the strength of each given impulse, so
the strength of the force 𝐹 (𝑡) is represented by the following distribution

𝐹 (𝑡) = 𝐽0

𝑁∑︁
𝑛=1

𝛿 (𝑡 − 𝑛𝜏) , (18)

where 𝜏 is the time interval of each push, 𝑁 the number of pushes and 𝛿 the Dirac delta function.
In this way, the fractional differential equation to be solved can be expressed as:

𝑚

𝜎2−𝛾
𝐻𝐷

𝛾,𝜇

0+ (𝑥 (𝑡)) + 𝛽

𝜎1−𝛼
𝐻𝐷

𝛼,𝜇

0+ (𝑥 (𝑡)) + 𝑘𝑥(𝑡) = 𝐽0

𝑁∑︁
𝑛=1

𝛿 (𝑡 − 𝑛𝜏) . (19)

4.1 Undamped forced oscillator
The solution presented here excludes the damping term in order to understand the effect produced

by changing the order of the derivative in the oscillation.
Taking 𝑥(0) = 𝑥0, 𝑥′(0) = 0, that is, we assume that the body starts from rest in a predetermined

position and denoting 𝜔2
0 = 𝑘

𝑚
𝜎2−𝛾 in Eq.(19), we have

𝐻𝐷
𝛾,𝜇

0+ (𝑥 (𝑡)) + 𝜔2
0𝑥(𝑡) = 𝐽0

𝑁∑︁
𝑛=1

𝛿 (𝑡 − 𝑛𝜏) .

Just apply the Laplace transform on both sides we get,

L
[
𝐻𝐷

𝛾,𝜇

0+ (𝑥 (𝑡))
]
+ L

[
𝜔2

0𝑥(𝑡)
]
= L

[
𝐽0

𝑁∑︁
𝑛=1

𝛿 (𝑡 − 𝑛𝜏)
]
,

using Theorem 3.1 we obtain

𝑠𝛾𝑋 (𝑠) − 𝑠1+𝜇(𝛾−2)𝑥0 = −𝜔2
0𝑋 (𝑠) + 𝐽0

𝑁∑︁
𝑛=1

L [𝛿 (𝑡 − 𝑛𝜏)]

⇔ 𝑠𝛾𝑋 (𝑠) − 𝑠1+𝜇(𝛾−2)𝑥0 = −𝜔2
0𝑋 (𝑠) + 𝐽0

𝑁∑︁
𝑛=1

𝑒−𝑛𝜏𝑠

(
𝑠𝛾 + 𝜔2

0

)
𝑋 (𝑠) = 𝑠1+𝜇(𝛾−2)𝑥0 + 𝐽0

𝑁∑︁
𝑛=1

𝑒−𝑛𝜏𝑠

𝑋 (𝑠) = 𝑠1+𝜇(𝛾−2)

𝑠𝛾 + 𝜔2
0
+ 𝐽0

𝑁∑︁
𝑛=1

(
𝑒−𝑛𝜏𝑠

𝑠𝛾 + 𝜔2
0

)
.
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Finally, it remains to apply the corresponding inverse Laplace transform in separate: the second
parcel has a well-known inverse transform (it is the product of the transform by the Heaviside
function), while the first parcel has the transform already evaluante in Theorem 3.1, so

𝑥(𝑡) = 𝑥0𝑡
𝛾−𝜇(𝛾−2)−2𝐸𝛾,𝛾−𝜇(𝛾−2)−1

{
−𝜔2

0𝑡
𝛾
}
+ 𝐽0

𝑁∑︁
𝑛=1

[𝐻 (𝑡 − 𝑛𝜏)] (𝑡 − 𝑛𝜏)𝛾−1𝐸𝛾,𝛾
{
−𝜔2

0 (𝑡 − 𝑛𝜏)
𝛾
}
.

(20)
Taking 𝜇 = 0 we recover the solution according to Riemann-Liouville and for 𝜇 = 1 according

to Caputo. Furthermore, for 𝛾 = 2 the two formulations coincide

𝑥(𝑡) = 𝑥0𝐸2,1
{
−𝜔2

0𝑡
2} + 𝐽0

𝑁∑︁
𝑛=1

𝐻 (𝑡 − 𝑛𝜏) (𝑡 − 𝑛𝜏) sin(𝜔0 (𝑡 − 𝑛𝜏))
𝜔0 (𝑡 − 𝑛𝜏)

𝑥(𝑡) = 𝑥0 cos(𝜔0𝑡) + 𝐽0

𝑁∑︁
𝑛=1

𝐻 (𝑡 − 𝑛𝜏) sin(𝜔0 (𝑡 − 𝑛𝜏))
𝜔0

.

(21)

4.2 Graphics
To sketch the graphs of some particular cases, Mathematica will be used. Initially, the solution

for 𝛾 = 2. Thus, we plot the graph for the solution of the Eq.(21). Taking the values: 𝑥0 = 0.01𝑚,
𝐽0 = 0.005𝑁𝑠, 𝜏 = 6, 𝑁 = 360, 𝜎 = 1𝑠, 𝜔0 = 1 and 𝑡total = 216. So,

Figure 1: Solution for Eq.(21) with 𝛾 = 2.

The result matches the physical description of the oscillations phenomenon. Despite the oscilla-
tor’s natural frequency is different from the frequency of the external load, with time it is clear that
an overlap of two staggered oscillations occurs.

Now, changing the order 𝛾 = 1.9 follows the outline of the curve.
In both derivative formulations (Figures 2 and 3) for a small value of 𝑥0 an increase in the

amplitude of motion occurs, but shortly thereafter there is a relaxation regime that tends to stabilize
the amplitude of oscillation.

However, changing 𝑥0 = 0.5 increases the relaxation effect.
This solution shows the coupling between the external force, which tends to maintain the beat,

and a friction-like effect, which tends to dissipate it.
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Figure 2: Solution of the Eq.(21) for 𝛾 = 1.9 and 𝜇 = 0.

Figure 3: Solution of the Eq.(21) for 𝛾 = 1.9 and 𝜇 = 1.

5 Concluding remarks
The solution found modeling the external force by a Dirac comb recovers both for 𝜇 = 0 and for

𝜇 = 1 when 𝛾 = 2 the same solution: a superposition of oscillations (the first refers to the oscillation
of the oscillator itself, while the second refers to the frequency of the external force).

Besides, in all figures there are small “jumps" in the trace of the represented curve, this pattern
is maintained due to the action of the Heaviside function.

Finally, in figure 4 when we change the order of the derivative to 𝛾 = 1.9 (value close to 2)
the pattern found resembles the smoothing, even if there is no smoothing term 𝛽 in the original
equation. This indicates that the change in the order of the derivative can simulate the dissipative
effect on the oscillator, reducing the amplitude of motion and, over a period of time, stabilizing it.
This is done by modeling with both formulations the Riemann-Liouville fractional derivative and
the Caputo fractional derivative.
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Figure 4: Solution of the Eq.(21) for 𝛾 = 1.9, 𝜇 = 0 and 𝑥0 = 0.5.
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