Análise da estabilidade do método explícito para discretização de equações diferenciais parabólicas por meio de diferenças finitas
Palavras-chave:
Diferenças finitas, Método explícito, Estabilidade, Equações diferenciais parabólicas.Resumo
Este trabalho tem por objetivo estudar os critérios de estabilidade do método numérico para resolução computacional de equações diferenciais parciais parabólicas. O problema físico utilizado nesse estudo de caso consiste na equação de difusividade térmica em uma barra. O método numérico utiliza aproximações das derivadas de forma explícita por meio de diferenças finitas. Foi aplicado o critério de Neumann para verificar a condição de estabilidade e foram realizados simulações para diferentes passos no eixo temporal. Os resultados das simulações são apresentados em gráficos e tabelas que contém os dados das soluções exatas e aproximadas em determinados pontos. Foi possível observar com os dados numéricos que a condição de estabilidade encontrada pelo critério de Neumann é essencial na prática e que o método explícito aproxima bem da solução com a condição de estabilidade satisfeita. Entretanto, há uma limitação para os tamanhos dos passos a serem tomados.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 C.Q.D. - Revista Eletrônica Paulista de Matemática
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.