Algebraic estimation of apothems in regular polygons using linear regression and bootstrap optimization.

Authors

DOI:

https://doi.org/10.21167/cqdv26e26009

Keywords:

Apotema, Polygon, Polygon area

Abstract

Estimating the apothem of regular polygons may be required in academical and real-life situations such as for calculating the area of regular polygons and the volume of prisms and pyramids. The calculus of apothem requires the use and knowledge of the tangent function. In the present article we describe an

algebraic approximation procedure for estimation of the apothem of any regular polygon given only the length of one side and the number of sides. An initial approximation was obtained based on nearly linear correlation between the product of polygon sides number and length with the squared root of the sum of the squared apothem and squared hypotenuse of one of the inner right-angled triangles of the polygon. In a second step the bootstrap method was to use to obtain the coefficients of a second-degree polynomial. The resulting equation predicts the apothem with a minimum accuracy of 0.9997. In polygons of 3, 4, 6 and with more than 25 sides the accuracy was higher than 0.9999.

Author Biographies

Sergio Roberto Peres Line, Universidade Estadual de Campinas (Unicamp), FOP

Graduado em Odontologia pela Universidade Estadual de Campinas (1985). Atualmente é Professor Titular da Faculdade de Odontologia de Piracicaba da Universidade Estadual de Campinas (FOP/Unicamp).

Walter Gonçales Martin, atualmente sem afiliação

Graduou-se em química pela Universidade Metodista de Piracicaba em 1999. Cursou a Escola Superior de Agronomia Luiz de Queiroz-USP por 3 anos (não completou o curso). Ministrou aulas de Física e Química para alunos do segundo grau e cursos pré-vestibulares. Foi proprietário do colégio Lúdico em Piracicaba.

Published

2025-09-04

How to Cite

LINE, S. R. P.; MARTIN, W. G. Algebraic estimation of apothems in regular polygons using linear regression and bootstrap optimization. C.Q.D. - Revista Eletrônica Paulista de Matemática, Bauru, v. 26, p. e26009, 2025. DOI: 10.21167/cqdv26e26009. Disponível em: https://sistemas.fc.unesp.br/ojs/index.php/revistacqd/article/view/498. Acesso em: 28 sep. 2025.

Issue

Section

Artigos de Pesquisa