Demonstração de dois teoremas sobre Sequências de Intervalos Encaixantes
DOI:
https://doi.org/10.21167/cqdv23n22023097104Palavras-chave:
Existência de raízes reais, Sequências de intervalos encaixantes, Intervalos encaixadosResumo
Em uma obra bastante utilizada no Ensino de Cálculo em Instituições de Ensino Superior no Brasil é feita uma referência à Propriedade dos Intervalos Encaixantes para se demonstrar a existência de raízes reais para uma equação quadrática, assim como para provar a existência de raizes para equações envolvendo potências quaisquer de incógnitas reais. Cita-se que se uma sequência de intervalos é encaixante então uma sequência formada com o quadrado ou com qualquer potência inteira de seus termos também é, muito embora não seja apresentada uma prova dessas alegações. Nesse trabalho, demonstra-se que se a Propriedade dos Intervalos Encaixantes vale para uma sequência de intervalos, então ela também vale para a sequência formada pelo quadrado ou qualquer potência inteira de seus termos. A prova é baseada na validade de duas Propriedades que fundamentam a Propriedade dos Intervalos Encaixantes e foi dividida em dois casos para incluir todas as possibilidades. A conclusão se baseia na dedução inferida a partir das provas das propriedades fundamentais, completando essa lacuna para melhor compreensão do assunto.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 C.Q.D. - Revista Eletrônica Paulista de Matemática
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.