Solução numérica de problemas elípticos não lineares via método de diferenças finitas exponencial de alta ordem
Palavras-chave:
Equações não lineares, Diferenças finitas exponencial, Métodos numéricos e aplicações, Método de Newton.Resumo
Diversos fenômenos f´ısicos são modelados por equações diferenciais parciais el´ıpticas. Nem sempre essas equações admitem solução anal´ıtica, por isso a importância de buscar técnicas de soluções numéricas cada vez mais eficientes. O método de diferenc¸as finitas é uma das técnicas numéricas mais antigas e populares na soluc¸ao de equações diferenciais parciais. Recentemente, um novo método de diferenças finitas vem sendo estudado e aplicado na solução de equações el´ıpticas lineares e não lineares. Trata-se do método de diferenças finitas exponencial de quarta ordem. A aplicação deste método em equações do segundo tipo faz surgir um sistema não linear que pode ser resolvido através de métodos iterativos, por exemplo, o método de Newton. Neste trabalho, uma equação el´ıptica não linear é resolvida através do método de diferenças finitas exponencial, e os resultados obtidos foram discutidos e comparados com resultados anal´ıticos e numéricos presentes na literatura.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 C.Q.D. - Revista Eletrônica Paulista de Matemática
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.