Bifurcações de singularidade dobra-dobra em campos de vetores suaves por partes
Palavras-chave:
Campos de vetores suaves por partes, Bifurcações, Filippov, Singularidade dobra-dobra.Resumo
O objetivo deste trabalho e estudar aspectos qualitativos e geométricos de bifurcações de campos de vetores suaves por partes definidos no plano. Em particular, abordaremos bifurcações a um parâmetro envolvendo a singularidade dobra-dobra, onde ambas as dobras sao invisíveis. Introduziremos, entre outros conceitos, algumas relações de equivalência entre campos suaves por partes e definiremos o conceito de estabilidade estrutural, que nos levará ao estudo de bifurcações. Para cada bifurcação estudada, exibiremos a forma canônica do campo e também analisaremos o diagrama de bifurcação. Por fim, mostraremos que um Σ-centro não-degenerado (um caso particular da singularidade dobra-dobra) e uma bifurcação de codimensão k e portanto podemos concluir que esta singularidade e de codimensão infinita.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 C.Q.D. - Revista Eletrônica Paulista de Matemática
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.