Distribuição de temperatura em cilindros circulares infinitos: aproximações de soluções para pequenos intervalos de tempo
Palavras-chave:
Funções de Bessel, Funções de Bessel modificadas, Transformada de Laplace, Separação de variáveis, Cilindro infinito.Resumo
Nesse trabalho, um problema de condução de calor transiente em um cilindro infinito, com geração de energia interna em regime uniforme, e condição de Dirichlet na superfície, foi analisado com o método da transformada de Laplace. Modelos de representações para os casos especiais dessas soluções restritas a pequenos intervalos de tempo foram estabelecidas por meio de aproximações assintóticas das funções de Bessel que fazem parte dessas soluções. Em particular, uma expressão suficientemente geral para a aproximação de soluções para esse tipo de problema de condução de calor pode ser estabelecida. Também foram obtidas aproximações assintóticas para as temperaturas no eixo do cilindro nos casos examinados considerando um intervalo restrito de tempo. Os resultados mostram que os perfis de temperaturas aproximadas são realísticos do ponto de vista físico de cada problema analisado usando pequenos intervalos de tempo.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 C.Q.D. - Revista Eletrônica Paulista de Matemática
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.